Orthogonalprojektion
Eine Orthogonalprojektion (von gr. ὀρθός orthós gerade, γωνία gōnía Winkel und lat. prōicere, PPP prōiectum vorwärtswerfen), orthogonale Projektion oder senkrechte Projektion ist eine Abbildung, die in vielen Bereichen der Mathematik eingesetzt wird. In der Geometrie ist eine Orthogonalprojektion die Abbildung eines Punkts auf eine Gerade oder eine Ebene, sodass die Verbindungslinie zwischen dem Punkt und seinem Abbild mit dieser Gerade oder Ebene einen rechten Winkel bildet. Das Abbild hat dann von allen Punkten der Gerade oder Ebene den kürzesten Abstand zum Ausgangspunkt. Eine Orthogonalprojektion ist damit ein Spezialfall einer Parallelprojektion, bei der die Projektionsrichtung gleich der Normalenrichtung der Gerade oder Ebene ist.
In der linearen Algebra wird dieses Konzept auf höherdimensionale Vektorräume über den reellen oder komplexen Zahlen und allgemeinere Winkel- und Abstandsbegriffe erweitert. Eine Orthogonalprojektion ist dann die Projektion eines Vektors auf einen Untervektorraum, sodass der Differenzvektor aus Abbild und Ausgangsvektor in dessen orthogonalem Komplement liegt. In der Funktionalanalysis wird der Begriff noch weiter in unendlichdimensionalen Skalarprodukträumen gefasst und insbesondere auf Funktionen angewandt. Die Existenz und Eindeutigkeit solcher Orthogonalprojektionen stellt dann der Projektionssatz sicher.
Orthogonalprojektionen besitzen vielfältige Einsatzbereiche innerhalb der Mathematik, beispielsweise in der darstellenden Geometrie, dem Gram-Schmidtschen Orthogonalisierungsverfahren, der Methode der kleinsten Quadrate, dem Verfahren der konjugierten Gradienten, der Fourier-Analysis oder der Bestapproximation. Sie besitzen Anwendungen unter anderem in der Kartografie, der Architektur, der Computergrafik und der Physik.
Darstellende Geometrie
In der darstellenden Geometrie und im technischen Zeichnen dienen Projektionen dazu, zweidimensionale Abbildungen von dreidimensionalen geometrischen Körpern herzustellen. Neben der Zentralprojektion kommen hierbei häufig Parallelprojektionen zum Einsatz. Eine Parallelprojektion ist eine Abbildung, die Punkte des dreidimensionalen Raums auf Punkte einer gegebenen Bildebene abbildet, wobei die Projektionsstrahlen zueinander parallel sind. Treffen die Projektionsstrahlen im rechten Winkel auf die Projektionsebene, so spricht man von einer Orthogonalprojektion.
Werden statt einer Bildebene drei Projektionsebenen verwendet, die aufeinander senkrecht stehen, dann handelt es sich um eine Dreitafelprojektion oder Normalprojektion. Meist liegen dabei die Projektionsebenen parallel zu den Achsen des verwendeten (kartesischen) Koordinatensystems. Besitzt ein Punkt im Raum dann die Koordinaten , so erhält man die Orthogonalprojektionen des Punkts auf die drei Koordinatenebenen durch
- (Projektion auf die xy-Ebene)
- (Projektion auf die xz-Ebene)
- (Projektion auf die yz-Ebene)
Verläuft eine Projektionsebene zwar parallel zu zwei der Koordinatenachsen, aber nicht durch den Nullpunkt des Koordinatensystems, so erhält man den projizierten Punkt durch Ersetzen des Werts durch den Schnittpunkt der Ebene mit der dritten Koordinatenachse. Bei einer orthogonalen Axonometrie, beispielsweise einer Isometrie oder einer Dimetrie, wird das abzubildende Objekt vor der Projektion auf spezifische Weise gedreht.
Analytische Geometrie
Die analytische Geometrie beschäftigt sich mit der Berechnung und den mathematischen Eigenschaften von Orthogonalprojektionen im zwei- und dreidimensionalen Raum, insbesondere für den Fall, dass die Projektionsebene nicht parallel zu den Koordinatenachsen liegt.
Projektion auf eine Gerade
Definition
In der euklidischen Ebene ist eine Orthogonalprojektion die Abbildung eines Punkts auf eine Gerade , derart dass die Verbindungslinie zwischen dem Punkt und seinem Abbild einen rechten Winkel mit der Gerade bildet. Eine Orthogonalprojektion muss demnach die beiden Bedingungen
- (Projektion)
- (Orthogonalität)
erfüllen. Die Linie heißt Lot des Punkts auf die Gerade und der projizierte Punkt wird Lotfußpunkt genannt. Die zeichnerische Konstruktion des Lots mit Zirkel und Lineal ist eine Standardaufgabe der euklidischen Geometrie und man spricht dabei vom Fällen des Lots.
Herleitung
In der analytischen Geometrie werden Punkte im kartesischen Koordinatensystem durch Ortsvektoren beschrieben und Geraden typischerweise als Geradengleichung in Parameterform , wobei der Ortsvektor eines Geradenpunkts, der Richtungsvektor der Geraden und ein reeller Parameter ist. Zwei Vektoren und bilden dabei einen rechten Winkel, wenn ihr Skalarprodukt ist. Die Orthogonalprojektion auf die Gerade muss die beiden Bedingungen
für ein erfüllen.
Wird die erste Gleichung in die zweite eingesetzt, so erhält man
- ,
was nach aufgelöst
ergibt.
Verläuft die Gerade als Ursprungsgerade durch den Nullpunkt, dann gilt und die Formel vereinfacht sich zu
- .
Ist zudem der Richtungsvektor der Gerade ein Einheitsvektor, gilt also , so erhält man die einfachere Darstellung
- .
Der Faktor gibt dann an, wie weit der projizierte Punkt auf der Gerade vom Nullpunkt entfernt ist. Analog kann auch ein Punkt im euklidischen Raum auf eine Gerade im Raum orthogonal projiziert werden, es wird lediglich mit drei statt zwei Komponenten gerechnet.
Beispiele
Die Orthogonalprojektion des Punkts mit auf die Ursprungsgerade mit Richtung in der euklidischen Ebene ist
- .
Die Orthogonalprojektion des Punkts mit auf die Ursprungsgerade mit Richtung im euklidischen Raum ist
- .
Eigenschaften
Befindet sich der zu projizierende Punkt bereits auf der Gerade, dann gibt es eine Zahl mit und die Orthogonalprojektion
verändert den Punkt nicht. Andernfalls minimiert die Orthogonalprojektion den Abstand zwischen dem Ausgangspunkt und allen Geradenpunkten, da für das Quadrat dieses Abstands nach dem Satz des Pythagoras
für alle Zahlen gilt. Das Minimum wird dabei eindeutig an dem orthogonal projizierten Punkt angenommen, da der erste Term der Summe genau für null wird. Bilden die Vektoren und einen rechten Winkel, so ist der projizierte Punkt der Nullpunkt.
Berechnung
Die Orthogonalprojektion eines Punkts auf eine Gerade , die keine Ursprungsgerade ist, ist durch
- .
gegeben, was durch Einsetzen der allgemeinen Geradengleichung in die Orthogonalitätsbedingung und durch Auflösen nach dem freien Parameter ermittelt werden kann. Aus dem Allgemeinfall erhält man die obigen Spezialfälle, indem der Stützvektor der Gerade in den Nullpunkt verschoben wird und ihr Richtungsvektor normiert wird, also durch seinen Betrag geteilt wird. In dem Beispiel der obigen Abbildung ist , sowie und damit .
Alternativ kann eine Orthogonalprojektion im zweidimensionalen Fall auch durch Ermittlung des Schnittpunkts der Ausgangsgeraden mit der Lotgeraden berechnet werden. Ist ein Normalenvektor der Ausgangsgeraden, so folgt aus den beiden Bedingungen
durch Einsetzen der ersten Gleichung in die zweite Gleichung und Auflösen nach dem freien Parameter für die Orthogonalprojektion
- .
Einen Normalenvektor kann man durch Vertauschen der beiden Komponenten des Richtungsvektors der Geraden und durch Umkehrung des Vorzeichens einer der beiden Komponenten ermitteln. In dem obigen Beispiel ist ein solches . Da eine Gerade im dreidimensionalen Raum keine ausgezeichnete Normalenrichtung besitzt, ist dieser einfache Ansatz aber nur in zwei Dimensionen möglich.
Projektion auf eine Ebene
Definition
Im dreidimensionalen Raum kann ein Punkt auch auf eine Ebene orthogonal projiziert werden. Eine Orthogonalprojektion muss dann die beiden Bedingungen
- (Projektion)
- (Orthogonalität)
erfüllen. Auch hier spricht man von Lot und Lotfußpunkt. Die Orthogonalität impliziert dabei, dass das Lot senkrecht auf allen Geraden der Ebene durch den Lotfußpunkt steht.
Herleitung
Ein Punkt im euklidischen Raum werde wieder durch einen Ortsvektor
Aufgrund der Linearität des Skalarprodukts reicht es dabei aus, Orthogonalität bezüglich der beiden Spannvektoren statt bezüglich aller Vektoren der Ebene nachzuweisen.
Handelt es sich bei der Ebene um eine Ursprungsebene, das heißt , dann muss die Orthogonalprojektion des Punkts auf die Ebene die folgenden drei Bedingungen erfüllen:
Setzt man die erste Gleichung in die anderen beiden Gleichungen ein, erhält man mit
ein lineares Gleichungssystem mit zwei Gleichungen und den beiden Unbekannten und . Falls die Spannvektoren zueinander orthogonal sind, das heißt gilt, dann zerfällt dieses Gleichungssystem in zwei voneinander unabhängige Gleichungen und seine Lösung kann direkt angegeben werden. Die Orthogonalprojektion des Punkts auf die Ebene ist dann gegeben durch:
Sind die Spannvektoren sogar orthonormal, gilt also zusätzlich , dann hat man die einfachere Darstellung
Man erhält die Orthogonalprojektion eines Punkts auf eine Ebene also durch Ermittlung der Orthogonalprojektionen und des Punkts auf die beiden von den Spannvektoren gebildeten Geraden und und durch Addition der Resultate (siehe Abbildung).
Beispiel
Die Orthogonalprojektion des Punkts auf die Ursprungsebene, die durch die orthogonalen Vektoren und aufgespannt wird, ist
- .
Eigenschaften
Befindet sich der zu projizierende Punkt bereits auf der Ebene, dann gibt es Zahlen und mit und die Orthogonalprojektion
verändert den Punkt nicht. Andernfalls minimiert der orthogonal projizierte Punkt den Abstand zwischen dem Ausgangspunkt und allen Punkten der Ebene, da für das Quadrat dieses Abstands mit dem Satz des Pythagoras
für alle Zahlen gilt. Das Minimum wird dabei eindeutig für und an dem orthogonal projizierten Punkt angenommen. Bildet sowohl mit , als auch mit einen rechten Winkel, dann ist der projizierte Punkt der Nullpunkt.
Berechnung
Verläuft eine Ebene nicht durch den Ursprung, so kann sie durch Translation um in den Ursprung verschoben werden. Sind ihre Spannvektoren nicht orthogonal, so können diese mit Hilfe des Gram-Schmidtschen Orthogonalisierungsverfahrens orthogonalisiert werden. Hierzu ermittelt man (beispielsweise) einen zu orthogonalen Vektor als Verbindungsvektor von zur Orthogonalprojektion von auf die Gerade in Richtung
und erhält somit den Allgemeinfall einer Orthogonalprojektion eines Punkts auf eine Ebene durch
- .
Alternativ dazu kann eine Orthogonalprojektion auch durch Berechnung des Schnitts der Lotgeraden mit der Ebene berechnet werden. Ein Normalenvektor der Ebene kann, sofern sie nicht in Normalenform gegeben ist, über das Kreuzprodukt der (nicht notwendigerweise orthogonalen, aber nichtkollinearen) Spannvektoren durch berechnet werden. Man erhält dann wie im zweidimensionalen Fall als Orthogonalprojektion
- .
Lineare Algebra
In der linearen Algebra wird das Konzept der Orthogonalprojektion auf allgemeine Vektorräume mit endlicher Dimension über dem Körper der reellen oder komplexen Zahlen, sowie allgemeine Skalarprodukte und damit Orthogonalitätsbegriffe verallgemeinert. Zwei Vektoren sind definitionsgemäß genau dann orthogonal, wenn ihr Skalarprodukt ist.[1]
Algebraische Darstellung
Definition
Eine Orthogonalprojektion auf einen Untervektorraum eines Vektorraums ist eine lineare Abbildung , die für alle Vektoren die beiden Eigenschaften
- (Projektion)
- für alle (Orthogonalität)[2]
erfüllt. Der Differenzvektor liegt damit im orthogonalen Komplement von . Das orthogonale Komplement ist selbst ein Untervektorraum bestehend aus denjenigen Vektoren in , die orthogonal zu allen Vektoren in sind.
Darstellung
Ist eine Basis des Untervektorraums mit der Dimension , dann hat jeder Vektor eine eindeutige Darstellung als Linearkombination . Aufgrund der Sesquilinearität des Skalarprodukts reicht es daher aus, Orthogonalität lediglich bezüglich der Basisvektoren statt bezüglich aller Vektoren des Untervektorraums nachzuweisen. Eine Orthogonalprojektion muss demnach die Bedingungen
- für
erfüllen. Setzt man die erste Gleichung in die anderen Gleichungen ein, erhält man mit
- für
ein lineares Gleichungssystem mit Gleichungen und den Unbekannten . Die dabei zugrunde liegende Gramsche Matrix ist aufgrund der linearen Unabhängigkeit der Basisvektoren regulär und damit ist dieses Gleichungssystem eindeutig lösbar. Ist nun eine Orthogonalbasis von , das heißt für , dann ist die zugehörige Gramsche Matrix eine Diagonalmatrix und das Gleichungssystem hat eine direkt angebbare Lösung. Die Orthogonalprojektion des Vektors auf den Untervektorraum ist dann durch
gegeben. Bildet sogar eine Orthonormalbasis, das heißt mit dem Kronecker-Delta , dann hat die Orthogonalprojektion die einfachere Darstellung
- .
Beispiele
Wählt man als Vektorraum den Standardraum und als Skalarprodukt das Standardskalarprodukt, so ist ein Untervektorraum eine lineare Mannigfaltigkeit (etwa eine Gerade, Ebene oder Hyperebene) durch den Nullpunkt und die Orthogonalprojektionen des vorangegangenen Geometrie-Abschnitts entsprechen gerade den Spezialfällen
- Projektion auf eine Ursprungsgerade in der Ebene:
- Projektion auf eine Ursprungsgerade im Raum:
- Projektion auf eine Ursprungsebene im Raum:
Der Fall entspricht in jeder Dimension der Abbildung eines Vektors auf den Nullpunkt und der Fall lässt den Vektor immer unverändert, da eine Orthogonalprojektion dann die identische Abbildung ist.
Eigenschaften
Eine Orthogonalprojektion ist eine Projektion, das heißt eine idempotente lineare Abbildung des Vektorraumes in sich selbst (genannt Endomorphismus). Ist der zu projizierende Vektor nämlich bereits Element des Untervektorraums, dann gibt es Skalare , sodass ist, und die Orthogonalprojektion
verändert den Vektor nicht, woraus die Idempotenz folgt. Die Linearität der Abbildung folgt direkt aus der Sesquilinearität des Skalarprodukts. Zudem gilt die Selbstadjungiertheit
für alle Vektoren . Der orthogonal projizierte Vektor minimiert den Abstand zwischen dem Ausgangsvektor und allen Vektoren des Untervektorraums bezüglich der von dem Skalarprodukt abgeleiteten Norm , denn es gilt mit dem Satz des Pythagoras für Skalarprodukträume
- .
für alle . Das Minimum wird dabei eindeutig an dem orthogonal projizierten Vektor angenommen. Liegt der Vektor im orthogonalen Komplement des Untervektorraums, dann ist der projizierte Vektor der Nullvektor.
Allgemeinfall
Ist die Basis des Unterraums nicht orthogonal, so kann sie mit dem Gram-Schmidtschen Orthogonalisierungsverfahren orthogonalisiert und so eine Orthogonalbasis von erhalten werden. Weiterhin kann ein Vektor auch auf einen affinen Unterraum mit orthogonal projiziert werden. Man erhält dann den Allgemeinfall einer Orthogonalprojektion eines Vektors auf einen affinen Unterraum durch
- .
Komplementäre Darstellung
Ist nun eine orthogonale Komplementärbasis von , also eine Orthogonalbasis des Komplements , dann erhält man aufgrund von
die komplementäre Darstellung einer Orthogonalprojektion auf einen affinen Unterraum als
- .
Matrixdarstellung
Koordinaten
Wählt man für den Vektorraum eine Orthonormalbasis bezüglich des Skalarprodukts , dann kann jeder Vektor als Koordinatenvektor über
- mit
dargestellt werden. Die Koordinaten sind dabei genau die Längen der Orthogonalprojektionen des Vektors auf die Basisvektoren. Das Skalarprodukt zweier Vektoren ist in Koordinatendarstellung dann das Standardskalarprodukt der zugehörigen Koordinatenvektoren , wobei der adjungierte Vektor (im reellen Fall der transponierte Vektor) zu ist.
Darstellung
Sind nun die Koordinatenvektoren einer Orthogonalbasis eines Untervektorraums und der Koordinatenvektor eines zu projizierenden Vektors , dann ist die Koordinatendarstellung einer Orthogonalprojektion
- .
Eine Orthogonalprojektion ist in Koordinatendarstellung damit einfach ein Matrix-Vektor-Produkt mit der Abbildungsmatrix gegeben durch
- .
Sind die Koordinatenvektoren einer Orthonormalbasis von , so hat die Orthogonalprojektionsmatrix die einfachere Darstellung
- .
Jeder Summand ist dabei das dyadische Produkt eines Koordinatenvektors mit sich selbst.
Beispiele
Im Koordinatenraum ist die Orthogonalprojektionsmatrix auf die Ursprungsgerade mit Richtung gegeben durch
- .
Die Orthogonalprojektionsmatrix auf die Ursprungsebene, die durch und aufgespannt wird, ist entsprechend
- .
Eigenschaften
Eine Orthogonalprojektionsmatrix ist idempotent, das heißt, es gilt
- .
Weiterhin ist sie selbstadjungiert (im reellen Fall symmetrisch), da
ist. Für den Rang und die Spur einer Orthogonalprojektionsmatrix gilt
- ,
da für idempotente Matrizen Rang und Spur übereinstimmen und die Einzelmatrizen jeweils Rang eins besitzen. Die Eigenwerte einer Orthogonalprojektionsmatrix sind und , wobei die zugehörigen Eigenräume gerade der Untervektorraum und sein orthogonales Komplement sind. Die Spektralnorm einer Orthogonalprojektionsmatrix ist damit, sofern nicht der Nullvektorraum ist, gleich eins.
Allgemeinfall
Bilden die Koordinatenvektoren zwar eine Basis, aber keine Orthogonalbasis des Untervektorraums, so kann man sie zur Berechnung einer Orthogonalprojektion orthogonalisieren oder ein entsprechendes lineares Gleichungssystem lösen. Fasst man die Basisvektoren spaltenweise zu einer Matrix zusammen, dann hat dieses Gleichungssystem die Gestalt der Normalgleichungen
mit dem Koeffizientenvektor . Die Matrixdarstellung einer Orthogonalprojektion ist dann aufgrund von gegeben durch
- .
Diese Matrix findet breite Anwendung in der Statistik (siehe Projektionsmatrix (Statistik)). Eine Orthogonalprojektion auf einen affinen Unterraum ist in Matrixdarstellung dann die affine Abbildung
mit der Einheitsmatrix und mit als dem Koordinatenvektor von . Unter Verwendung homogener Koordinaten lässt sich jede Orthogonalprojektion auch als ein einfaches Matrix-Vektorprodukt darstellen.
Komplementäre Darstellung
Eine Orthogonalprojektion auf einen affinen Unterraum hat die komplementäre Matrixdarstellung
mit der Orthogonalprojektionsmatrix auf den Komplementärraum gegeben durch
- .
Bilden die Koordinatenvektoren eine Orthogonalbasis des Komplementärraums , so hat die komplementäre Orthogonalprojektionsmatrix die Darstellung
- .
Funktionalanalysis
In der Funktionalanalysis wird das Konzept der Orthogonalprojektion auf unendlichdimensionale Skalarprodukträume über den reellen oder komplexen Zahlen verallgemeinert und insbesondere auf Funktionenräume angewandt.
Definition
Ist ein Skalarproduktraum und ist ein Untervektorraum von mit orthogonalem Komplement , dann ist eine Orthogonalprojektion ein Operator (auch orthogonaler Projektor genannt), mit den beiden Eigenschaften
- (Projektion)
- (Orthogonalität)
wobei das Bild und der Kern des Operators ist. Der komplementäre Operator besitzt dann als Bild und als Kern .
Existenz und Eindeutigkeit
Damit solche Orthogonalprojektionen auch existieren und eindeutig sind, müssen die betrachteten Räume jedoch eingeschränkt werden. Ist ein Hilbertraum, also ein vollständiger Skalarproduktraum, und ist ein abgeschlossener Untervektorraum von , dann stellt der Projektionssatz die Existenz und Eindeutigkeit von Orthogonalprojektionen sicher. Zu jedem Vektor gibt es dann eindeutige Vektoren und , sodass dieser Vektor die Darstellung
besitzt. Damit bilden und eine orthogonale Zerlegung von , das heißt, der gesamte Raum lässt sich als orthogonale Summe darstellen. Ein endlichdimensionaler Untervektorraum ist immer abgeschlossen und auf die Vollständigkeit von kann dann auch verzichtet werden.
Darstellung
Jeder Hilbertraum besitzt eine Orthonormalbasis, die sich allerdings nicht immer explizit angeben lässt. Ist allerdings ein separabler Hilbertraum, dann ist eine solche Orthonormalbasis als Schauderbasis abzählbar, sodass jeder Vektor in eine Reihe
entwickelt werden kann. Eine solche Orthonormalbasis kann stets aus einer linear unabhängigen Teilmenge von mit Hilfe des Gram-Schmidtschen Orthogonalisierungsverfahrens erhalten werden. Ist nun eine (ebenfalls abzählbare) Orthonormalbasis eines abgeschlossenen Untervektorraums , dann hat eine Orthogonalprojektion die Reihendarstellung
- .
Diese Darstellung lässt sich auch auf nicht-separable, also überabzählbar-dimensionale Hilberträume verallgemeinern. Ist ein abgeschlossener Untervektorraum eines allgemeinen Hilbertraums und mit einer beliebigen Indexmenge eine Orthonormalbasis dieses Untervektorraums, dann hat eine Orthogonalprojektion die entsprechende Darstellung
- ,
wobei nur abzählbar viele Summenglieder dieser Summe ungleich null sind. Diese Reihen sind nach der Besselschen Ungleichung unbedingt konvergent und nach der Parsevalschen Gleichung wird dabei tatsächlich jedes Element von auf sich selbst abgebildet.
Beispiel
Gegeben sei der Raum L2 der quadratisch integrierbaren reellen Funktionen im Intervall mit dem L2-Skalarprodukt
Für diesen Raum bilden die Legendre-Polynome ein vollständiges Orthogonalsystem. Gesucht ist nun die Orthogonalprojektion der Exponentialfunktion auf den Untervektorraum der linearen Funktionen. Für diesen Unterraum bilden die beiden Monome eine Orthogonalbasis, was nach Normierung die Orthonormalbasis
ergibt. Die Orthogonalprojektion von auf den Untervektorraum der linearen Funktionen ist dann gegeben durch
- .
Eigenschaften
Ist ein Hilbertraum und ein abgeschlossener Unterraum von , dann ist ein stetiger linearer Operator mit den folgenden Eigenschaften:
- ist eine Projektion, das heißt .
- ist selbstadjungiert, das heißt mit dem adjungierten Operator .
- ist normal, das heißt .
- ist positiv, das heißt insbesondere für alle .
- ist eine partielle Isometrie, bei der der isometrische Anteil die Identität ist.
- ist genau dann kompakt, wenn endlichdimensional ist.
- ist Bestapproximation in der Skalarproduktnorm, das heißt .
- , falls , und , falls (in der Operatornorm).
Umgekehrt ist eine stetige lineare Projektion , die selbstadjungiert oder normal oder positiv oder auf eins normiert ist, eine Orthogonalprojektion auf den Bildraum .
Anwendungen
Orthogonalprojektionen besitzen vielfältige Anwendungen, von denen hier nur einige herausgestellt werden:
- Geometrie
- in der analytischen Geometrie bei Abstandsberechnungen und Spiegelungen an Ebenen
- in der Physik bei der Zerlegung von Kräften in ihre Bestandteile
- in der Computergrafik bei der Berechnung von Reflexionen und Schatten
- Lineare Algebra
- bei der Konstruktion von Orthonormalbasen mit dem Gram-Schmidtschen Orthogonalisierungsverfahren
- bei der Lösung linearer Ausgleichsprobleme mit der Methode der kleinsten Quadrate
- bei der iterativen Lösung linearer Gleichungssysteme mit dem Verfahren der konjugierten Gradienten und allgemeinen Krylow-Unterraum-Verfahren
- Funktionalanalysis
- in der Approximationstheorie bei der Bestapproximation von Funktionen
- in der Fourier-Analysis und der Wavelet-Analysis von Signalen
- in der Sobolev-Theorie zur Lösung partieller Differenzialgleichungen
- in der Quantenmechanik zur Beschreibung quantenmechanischer Zustände mittels der Bra-Ket-Notation
- Statistik und Wahrscheinlichkeitstheorie
- bei der Hauptkomponentenanalyse multivariater Datensätze
- bei bedingten Erwartungswerten
Siehe auch
Literatur
- Hans Wilhelm Alt: Lineare Funktionalanalysis: Eine anwendungsorientierte Einführung. 5. Auflage. Springer, 2008, ISBN 3-540-34186-2.
- Albrecht Beutelspacher: Lineare Algebra. Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen. 7. Auflage. Vieweg, 2009, ISBN 3-528-66508-4.
- Dirk Werner: Funktionalanalysis. 5. Auflage. Springer, 2005, ISBN 3-540-21381-3.
Anmerkungen
- ↑ Im Folgenden wird diejenige Variante des komplexen Skalarprodukts verwendet, die linear im ersten und semilinear im zweiten Argument ist.
- ↑ Eine dazu äquivalente Bedingung ist für alle .
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 14.01. 2024