Lineare Unabhängigkeit
In der linearen Algebra wird eine Familie von Vektoren eines Vektorraums linear unabhängig genannt, wenn sich der Nullvektor nur durch eine Linearkombination der Vektoren erzeugen lässt, in der alle Koeffizienten der Kombination auf den Wert null gesetzt werden. Äquivalent dazu ist (sofern die Familie nicht nur aus dem Nullvektor besteht), dass sich keiner der Vektoren als Linearkombination der anderen Vektoren der Familie darstellen lässt.
Andernfalls heißen sie linear abhängig. In diesem Fall lässt sich mindestens einer der Vektoren (aber nicht notwendigerweise jeder) als Linearkombination der anderen darstellen.
Zum Beispiel sind im dreidimensionalen euklidischen Raum die Vektoren , und linear unabhängig. Die Vektoren , und sind hingegen linear abhängig, denn der dritte Vektor ist die Summe der beiden ersten, d.h. die Differenz von der Summe der ersten beiden und dem dritten ist der Nullvektor. Die Vektoren , und sind wegen ebenfalls linear abhängig; jedoch ist hier der dritte Vektor nicht als Linearkombination der beiden anderen darstellbar.
Definition
Es sei ein Vektorraum über dem Körper und eine Indexmenge. Eine durch indizierte Familie heißt linear unabhängig, wenn jede hierin enthaltene endliche Teilfamilie linear unabhängig ist.
Eine endliche Familie von Vektoren aus heißt linear unabhängig, wenn die einzig mögliche Darstellung des Nullvektors als Linearkombination
mit Koeffizienten aus dem Grundkörper diejenige ist, bei der alle Koeffizienten gleich null sind. Lässt sich dagegen der Nullvektor auch nichttrivial (mit Koeffizienten ungleich null) erzeugen, dann sind die Vektoren linear abhängig.
Die Familie ist also genau dann linear abhängig, wenn es eine endliche Teilmenge gibt, sowie Koeffizienten , von denen mindestens einer ungleich 0 ist, so dass
Der Nullvektor ist ein Element des Vektorraumes . Im Gegensatz dazu ist 0 ein Element des Körpers .
Der Begriff wird auch für Teilmengen eines Vektorraums verwendet: Eine Teilmenge eines Vektorraums heißt linear unabhängig, wenn jede endliche Linearkombination von paarweise verschiedenen Vektoren aus nur dann den Nullvektor darstellen kann, wenn alle Koeffizienten in dieser Linearkombination den Wert null haben. Man beachte folgenden Unterschied: Ist etwa eine linear unabhängige Familie, so ist offenbar eine linear abhängige Familie. Die Menge ist dann aber linear unabhängig.
Andere Charakterisierungen und einfache Eigenschaften
- Die Vektoren
sind (sofern nicht
und )
genau dann linear unabhängig, wenn sich keiner von ihnen als Linearkombination
der anderen darstellen lässt.
Diese Aussage gilt nicht im allgemeineren Kontext von Moduln über Ringen.
- Eine Variante dieser Aussage ist das Abhängigkeitslemma: Sind linear unabhängig und linear abhängig, so lässt sich als Linearkombination von schreiben.
- Ist eine Familie von Vektoren linear unabhängig, so ist jede Teilfamilie dieser Familie ebenfalls linear unabhängig. Ist eine Familie hingegen linear abhängig, so ist jede Familie, die diese abhängige Familie beinhaltet, ebenso linear abhängig.
- Elementare Umformungen der Vektoren verändern die lineare Abhängigkeit oder die lineare Unabhängigkeit nicht.
- Ist der Nullvektor einer der (hier: Sei ), so sind diese linear abhängig – der Nullvektor kann erzeugt werden, indem alle gesetzt werden mit Ausnahme von , welches als Koeffizient des Nullvektors beliebig (also insbesondere auch ungleich null) sein darf.
- In einem -dimensionalen Raum ist eine Familie aus mehr als Vektoren immer linear abhängig (Schranken-Lemma).
Ermittlung mittels Determinante
Hat man Vektoren eines -dimensionalen Vektorraums als Zeilen- oder Spaltenvektoren bzgl. einer festen Basis gegeben, so kann man deren lineare Unabhängigkeit dadurch prüfen, dass man diese Zeilen- bzw. Spaltenvektoren zu einer -Matrix zusammenfasst und dann deren Determinante ausrechnet. Die Vektoren sind genau dann linear unabhängig, wenn die Determinante ungleich 0 ist.
Basis eines Vektorraums
Eine wichtige Rolle spielt das Konzept der linear unabhängigen Vektoren bei der Definition beziehungsweise beim Umgang mit Vektorraumbasen. Eine Basis eines Vektorraums ist ein linear unabhängiges Erzeugendensystem. Basen erlauben es, insbesondere bei endlichdimensionalen Vektorräumen mit Koordinaten zu rechnen.
Beispiele
Einzelner Vektor
Der Vektor sei ein Element des Vektorraums über . Dann ist der einzelne Vektor für sich genau dann linear unabhängig, wenn er nicht der Nullvektor ist.
Denn aus der Definition des Vektorraums folgt, dass wenn
- mit ,
nur oder sein kann!
Vektoren in der Ebene
Die Vektoren und sind in linear unabhängig.
Beweis: Für gelte
d.h.
Dann gilt
also
Dieses Gleichungssystem ist nur für die Lösung (die sogenannte triviale Lösung) erfüllt; d.h. und sind linear unabhängig.
Standardbasis im n-dimensionalen Raum
Im Vektorraum betrachte folgende Elemente (die natürliche oder Standardbasis von ):
Dann ist die Vektorfamilie mit linear unabhängig.
Beweis: Für gelte
Dann gilt aber auch
und daraus folgt, dass für alle .
Funktionen als Vektoren
Sei der Vektorraum aller Funktionen . Die beiden Funktionen und in sind linear unabhängig.
Beweis: Es seien und es gelte
für alle . Leitet man diese Gleichung nach ab, dann erhält man eine zweite Gleichung
Indem man von der zweiten Gleichung die erste subtrahiert, erhält man
Da diese Gleichung für alle und damit insbesondere auch für gelten muss, folgt daraus durch Einsetzen von , dass sein muss. Setzt man das so berechnete wieder in die erste Gleichung ein, dann ergibt sich
Daraus folgt wieder, dass (für ) sein muss.
Da die erste Gleichung nur für und lösbar ist, sind die beiden Funktionen und linear unabhängig.
Reihen
Sei der Vektorraum aller reellwertigen stetigen Funktionen auf dem offenen Einheitsintervall. Dann gilt zwar
aber dennoch sind linear unabhängig. Linearkombinationen aus Potenzen von sind nämlich nur Polynome und keine allgemeinen Potenzreihen, insbesondere also in der Nähe von 1 beschränkt, so dass sich nicht als Linearkombination von Potenzen darstellen lässt.
Zeilen und Spalten einer Matrix
Interessant ist auch die Frage, ob die Zeilen einer Matrix linear unabhängig sind oder nicht. Dabei werden die Zeilen als Vektoren betrachtet. Falls die Zeilen einer quadratischen Matrix linear unabhängig sind, so nennt man die Matrix regulär, andernfalls singulär. Die Spalten einer quadratischen Matrix sind genau dann linear unabhängig, wenn die Zeilen linear unabhängig sind. Beispiel einer Folge von regulären Matrizen: Hilbert-Matrix.
Rationale Unabhängigkeit
Reelle Zahlen, die über den rationalen Zahlen als Koeffizienten linear unabhängig sind, nennt man rational unabhängig oder inkommensurabel. Die Zahlen sind demnach rational unabhängig oder inkommensurabel, die Zahlen dagegen rational abhängig.
Verallgemeinerungen
Die Definition linear unabhängiger Vektoren lässt sich analog auf Elemente eines Moduls anwenden. In diesem Zusammenhang werden linear unabhängige Familien auch frei genannt (siehe auch: freier Modul).
Der Begriff der linearen Unabhängigkeit lässt sich weiter zu einer Betrachtung von unabhängigen Mengen verallgemeinern.
Literatur
- Siegfried Bosch: Lineare Algebra. 5. Auflage, Springer, Berlin/Heidelberg 2014, ISBN 978-3-642-55259-5.
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 30.05. 2021