Lineare Algebra
Die lineare Algebra (auch Vektoralgebra) ist ein Teilgebiet der Mathematik, das sich mit Vektorräumen und linearen Abbildungen zwischen diesen beschäftigt. Dies schließt insbesondere auch die Betrachtung von linearen Gleichungssystemen und Matrizen mit ein.
Vektorräume und deren lineare Abbildungen sind ein wichtiges Hilfsmittel in vielen Bereichen der Mathematik. Außerhalb der reinen Mathematik finden sich Anwendungen unter anderem in den Naturwissenschaften, in der Informatik und in der Wirtschaftswissenschaft (zum Beispiel in der Optimierung).
Die lineare Algebra entstand aus zwei konkreten Anforderungen heraus: einerseits dem Lösen von linearen Gleichungssystemen, andererseits der rechnerischen Beschreibung geometrischer Objekte, der sogenannten analytischen Geometrie (daher bezeichnen manche Autoren lineare Algebra als lineare Geometrie).
Geschichte
Die Anfänge der Algebra und somit auch der Begriff selbst gehen weitestgehend auf den persisch-choresmischen Mathematiker, Astronomen, Geographen und Universalgelehrten Al-Chwarizmi zurück, der aufgrund der Islamisierung im Iran seine Werke ins Arabische übersetzen musste und so auf den Namen „al-jabr“ kam. Daraus leitet sich der Begriff der Algebra her.
Während die Entwicklung der Algebra bereits im alten Ägypten begann, begann die Entwicklung der linearen Algebra als eigenständiges Teilgebiet erst im 17. Jahrhundert mit der Theorie der Determinante. Die Entwicklung dieser Theorie wurde unabhängig voneinander von Gottfried Wilhelm Leibniz und Seki Takakazu gestartet. Im Jahr 1750 veröffentlichte dann Gabriel Cramer die nach ihm benannte cramersche Regel. Damit war man erstmals im Besitz einer Lösungsformel für viele lineare Gleichungssysteme.
Die Geschichte der modernen linearen Algebra reicht zurück bis in die Jahre
1843 und 1844. 1843 erdachte William Rowan
Hamilton (von dem der Begriff Vektor
stammt) mit den Quaternionen
eine Erweiterung der komplexen
Zahlen. 1844 veröffentlichte Hermann
Graßmann sein Buch Die lineale Ausdehnungslehre. Arthur Cayley führte dann
1857 mit den -Matrizen
eine der grundlegendsten algebraischen Ideen ein.
Ab dem 20. Jahrhundert befasste man sich dann mehrheitlich mit dem Begriff des Vektorraums. Insbesondere die Mathematiker August Ferdinand Möbius, Constantin Carathéodory und Hermann Weyl leisteten hierfür die Vorarbeit. So wurde beispielsweise festgestellt, dass lineare Abbildungen zwischen endlichdimensionalen Vektorräumen durch Matrizen beschrieben werden können. Auf dieser Erkenntnis basierend konnte Stefan Banach als Erster eine axiomatische Definition für reelle Vektorräume angeben.
Lineare Gleichungssysteme
Als lineares Gleichungssystem bezeichnet man eine Zusammenfassung von Gleichungen der Art
Derartige Gleichungssysteme erhält man aus vielen alltäglichen Fragestellungen, beispielsweise:
- In welchem Verhältnis muss man eine 30%ige Lösung
(entspricht
) und eine 60%ige Lösung (entspricht
) mischen, um eine 40%ige Lösung zu erhalten?
Der wesentliche Abstraktionsschritt der linearen Algebra besteht nun darin,
die linken Seiten als eine Funktion
der Unbekannten
(in diesem Fall die Menge der jeweiligen Lösungen) aufzufassen:
Dann wird die Lösung des Gleichungssystems zu der Aufgabe: Finde ein ,
sodass
gilt. Das Übereinanderschreiben ist dabei lediglich ein Formalismus, um mit mehr als einer Zahl gleichzeitig umgehen zu können.
Statt
schreibt man auch einfach die relevanten Zahlen in Form eines Rechtecks auf und
nennt das Objekt eine Matrix:
Man stellt fest, dass die Funktion
spezielle Eigenschaften hat, sie ist eine lineare
Abbildung. Ist
eine Lösung für das Gleichungssystem
,
und
eine Lösung des Gleichungssystems
,
so ist
eine Lösung von .
Man kann das auch in der Form
schreiben. Ist weiter
irgendeine reelle
Zahl, so ist
;
dabei ist
.
Analytische Geometrie
Der andere Ursprung der linearen Algebra findet sich in der rechnerischen
Beschreibung des 2- und 3-dimensionalen (euklidischen) Raumes, auch
„Anschauungsraum“ genannt. Mit Hilfe eines Koordinatensystems
können Punkte im Raum durch Tripel
von Zahlen beschrieben werden. Der Abbildungstyp der Verschiebung führt
zum Begriff des Vektors, der Richtung und Betrag der Verschiebung angibt.
Viele physikalische
Größen, beispielsweise Kräfte,
haben stets diesen Richtungsaspekt.
Da man auch Vektoren durch Zahlentripel
beschreiben kann, verschwimmt die Trennung zwischen Vektoren und Punkten: Einem
Punkt
entspricht sein Ortsvektor,
der vom Koordinatenursprung nach
zeigt.
Viele der in der klassischen Geometrie betrachteten Abbildungstypen, beispielsweise Drehungen um Achsen durch den Ursprung oder Spiegelungen an Ebenen durch den Ursprung, gehören zur Klasse der linearen Abbildungen, die schon oben erwähnt wurde.
Vektorräume und lineare Algebra
Der Begriff des Vektorraumes entsteht als Abstraktion der obigen Beispiele: Ein Vektorraum ist eine Menge, deren Elemente Vektoren genannt werden, zusammen mit
- einer Addition von Vektoren
- einer Multiplikation von Vektoren mit Elementen eines fixierten Körpers, Skalarmultiplikation (äußere Multiplikation) genannt.
Diese Addition und die Skalarmultiplikation müssen noch einige einfache Eigenschaften erfüllen, die auch für die Vektoren im Anschauungsraum gelten.
Man könnte sagen, dass Vektorräume gerade so definiert sind, dass man von linearen Abbildungen zwischen ihnen sprechen kann.
In gewisser Weise ist der Begriff des Vektorraums für die lineare Algebra
bereits zu allgemein. Man kann jedem Vektorraum eine Dimension
zuordnen, beispielsweise hat die Ebene Dimension
und der Anschauungsraum die Dimension
.
Es gibt aber Vektorräume, deren Dimension nicht endlich ist, wodurch viele der
bekannten Eigenschaften verloren gehen. Es hat sich aber als sehr erfolgreich
erwiesen, unendlichdimensionale Vektorräume mit einer zusätzlichen topologischen
Struktur auszustatten; die Untersuchung topologischer
Vektorräume ist Gegenstand der Funktionalanalysis.
(Der Rest dieses Artikels beschäftigt sich mit dem Fall endlicher Dimensionen.)
Wichtige Sätze und Ergebnisse
Jeder Vektorraum hat mindestens eine Basis.
Je zwei Basen eines Vektorraumes haben gleich viele Elemente; nur deshalb ist es
sinnvoll, von der Dimension eines Vektorraumes zu sprechen. Für Summen und
Durchschnitte von Untervektorräumen
gilt die Dimensionsformel
und für die Dimensionen von Faktorräumen
die Formel .
Jede lineare Abbildung
ist durch die Angabe der Bilder einer Basis von
eindeutig festgelegt. Für lineare Abbildungen gelten der Homomorphiesatz und der
Rangsatz.
Lineare Abbildungen können bezüglich fest gewählter Basen durch Matrizen dargestellt
werden. Dabei entspricht der Hintereinanderausführung von linearen Abbildungen
die Multiplikation
ihrer Darstellungsmatrizen.
Ein lineares Gleichungssystem
mit
,
und
ist genau dann lösbar, wenn der Rang
der Matrix
gleich dem Rang der erweiterten Koeffizientenmatrix
ist. In diesem Fall ist die Lösungsmenge des Systems ein affiner Unterraum von
der Dimension
.
Für nicht zu große Gleichungssysteme können die Rangbestimmung und die
Berechnung des Lösungsraumes mit dem Gaußschen
Eliminationsverfahren durchgeführt werden.
Eine lineare Abbildung
(also ein Endomorphismus)
eines endlichdimensionalen Vektorraumes
ist bereits invertierbar, wenn sie injektiv oder surjektiv ist. Dies ist
wiederum genau dann der Fall, wenn ihre Determinante
ungleich null ist. Hieraus folgt, dass die Eigenwerte
eines Endomorphismus genau die Nullstellen seines charakteristischen
Polynoms sind. Eine weitere wichtige Aussage über das charakteristische
Polynom ist der Satz
von Cayley-Hamilton.
Ein Endomorphismus (beziehungsweise eine quadratische Matrix) ist genau dann diagonalisierbar, wenn das charakteristische Polynom in Linearfaktoren zerfällt und für jeden Eigenwert dessen algebraische Vielfachheit gleich der geometrischen Vielfachheit, also die Nullstellenordnung des Eigenwerts im charakteristischen Polynom gleich der Dimension des zugehörigen Eigenraumes ist. Äquivalent dazu ist die Existenz einer Basis des Vektorraumes, die aus Eigenvektoren der linearen Abbildung besteht. Endomorphismen, deren charakteristisches Polynom in Linearfaktoren zerfällt, sind immerhin noch trigonalisierbar, können also durch eine Dreiecksmatrix dargestellt werden. Ein etwas tiefer liegendes Ergebnis ist, dass die darstellende Matrix dabei sogar in jordansche Normalform gebracht werden kann.
In Vektorräumen, auf denen zusätzlich ein Skalarprodukt
gegeben ist, wird durch
eine Norm
definiert. In diesen Skalarprodukträumen
existieren stets Orthonormalbasen,
die etwa durch das Gram-Schmidtsche
Orthonormalisierungsverfahren konstruiert werden können. Nach dem Projektionssatz kann
man in diesen Räumen die Bestapproximation
aus einem Untervektorraum durch orthogonale
Projektion bestimmen.
Bezüglich der Diagonalisierbarkeit von Endomorphismen in Skalarprodukträumen
stellt sich die Frage, ob eine Orthonormalbasis
aus Eigenvektoren existiert. Das zentrale Resultat hierzu ist der Spektralsatz. Insbesondere
gilt im reellen Fall: Zu jeder symmetrischen
Matrix
gibt es eine orthogonale
Matrix
,
sodass
eine Diagonalmatrix ist. Wendet man dieses Ergebnis auf quadratische Formen
an, ergibt sich der Satz von der Hauptachsentransformation.
Auch Bilinearformen und Sesquilinearformen können bei fest gewählten Basen durch Matrizen dargestellt werden. Eine Bilinearform ist genau dann symmetrisch und positiv definit, also ein Skalarprodukt, wenn ihre darstellende Matrix symmetrisch und positiv definit ist. Eine symmetrische Matrix ist genau dann positiv definit, wenn alle ihre Eigenwerte positiv sind. Allgemein gilt für symmetrische Bilinearformen und hermitesche Sesquilinearformen der Trägheitssatz von Sylvester, der besagt, dass die Anzahl der positiven und negativen Eigenwerte der darstellenden Matrizen nicht von der Wahl der Basis abhängen.
Vektoren und Matrizen
Vektoren endlichdimensionaler Räume können durch ihre Komponenten beschrieben werden, die (je nach Anwendung) als Spaltenvektor
oder Zeilenvektor
geschrieben werden. Häufig werden Zeilenvektoren mit einem hochgestellten T
für transponiert,
wie ,
gekennzeichnet.
In der Literatur werden Vektoren auf unterschiedliche Weise von anderen Größen unterschieden: Es werden Kleinbuchstaben, fettgedruckte Kleinbuchstaben, unterstrichene Kleinbuchstaben, Kleinbuchstaben mit einem Pfeil darüber oder kleine Frakturbuchstaben benutzt. Dieser Artikel verwendet Kleinbuchstaben.
Eine Matrix wird durch ein „Raster“ von Zahlen angegeben. Hier ist eine Matrix mit vier Zeilen und drei Spalten:
Matrizen werden meistens mit Großbuchstaben bezeichnet.
Einzelne Elemente eines Vektors werden bei Spaltenvektoren in der Regel durch
einen Index angegeben: Das zweite Element des oben angegebenen Vektors
wäre dann
.
In Zeilenvektoren wird manchmal eine Hochzahl verwendet, wobei man aufpassen
muss, ob eine Vektorindizierung oder ein Exponent
vorliegt: Mit dem obigen Beispiel
hat man etwa
.
Matrixelemente werden durch zwei Indizes angegeben. Dabei werden die Elemente
durch Kleinbuchstaben dargestellt:
ist das Element in der zweiten Zeile der dritten Spalte (statt „in der dritten
Spalte der zweiten Zeile“, denn so lässt sich
leichter lesen).
Der verallgemeinerte Begriff dieser Gebilde ist Tensor,
Skalare sind Tensoren nullter Stufe, Vektoren Tensoren erster Stufe, Matrizen
Tensoren zweiter Stufe. Ein Tensor -ter
Stufe kann durch einen
-dimensionalen
Zahlenwürfel repräsentiert werden.
Oftmals ist es erforderlich, Matrizen mittels elementarer Zeilenumformungen oder Basiswechsel auf eine spezielle Form zu bringen. Wichtig sind dabei insbesondere die Dreiecksform, die Diagonalform und die jordansche Normalform.
Endomorphismen und quadratische Matrizen
Bei der Darstellung einer linearen Abbildung – wie unter Matrix
beschrieben – gibt es den Sonderfall einer linearen Abbildung
eines endlichdimensionalen Vektorraums auf sich selbst (eines sog. Endomorphismus). Man
kann dann dieselbe Basis
für Urbild- und Bildkoordinaten verwenden und erhält eine quadratische Matrix
,
sodass die Anwendung der linearen Abbildung der Linksmultiplikation mit
entspricht. Um die Abhängigkeit von
und
zum Ausdruck zu bringen, verwendet man Schreibweisen wie
oder
.
Die zweimalige Hintereinanderausführung dieser Abbildung entspricht dann der
Multiplikation mit
usw., und man kann alle polynomialen Ausdrücke mit
(Summen von Vielfachen von Potenzen von
)
als lineare Abbildungen des Vektorraums auffassen.
Invertierbarkeit
Analog zur Rechenregel
bei Zahlen ist die nullte Potenz einer quadratischen Matrix die Diagonalmatrix
(Einheitsmatrix) mit
Einsen auf der Diagonalen und in der alle restlichen Elemente Null sind, sie
entspricht der Identitätsabbildung jedes Vektors auf sich selbst. Negative
Potenzen einer quadratischen Matrix
lassen sich nur berechnen, wenn die durch
gegebene lineare Abbildung invertierbar ist, also keine zwei unterschiedlichen
Vektoren
und
auf denselben Vektor
abbildet. Anders ausgedrückt, muss für eine invertierbare Matrix
aus
stets
folgen, das lineare Gleichungssystem
darf also nur die Lösung
haben. Zu einer invertierbaren Matrix
existiert eine inverse
Matrix
mit
.
Determinanten
Eine Determinante ist eine spezielle Funktion, die einer quadratischen Matrix eine Zahl zuordnet. Diese Zahl gibt Auskunft über einige Eigenschaften der Matrix. Beispielsweise lässt sich an ihr erkennen, ob eine Matrix invertierbar ist. Eine weitere wichtige Anwendung ist die Berechnung des charakteristischen Polynoms und damit der Eigenwerte der Matrix.
Es gibt geschlossene Formeln zur Berechnung der Determinanten, wie den Laplace’schen Entwicklungssatz oder die Leibniz-Formel. Diese Formeln sind jedoch eher von theoretischem Wert, da ihr Aufwand bei größeren Matrizen stark ansteigt. In der Praxis kann man Determinanten am leichtesten berechnen, indem man die Matrix mit Hilfe des Gauß-Algorithmus in obere oder untere Dreiecksform bringt, die Determinante ist dann einfach das Produkt der Hauptdiagonalelemente.
Beispiel
Obige Begriffe sollen an einem durch die Fibonacci-Folge motivierten Beispiel verdeutlicht werden.
Berechnung von Potenzen mittels Diagonalisierung
Die Fibonacci-Folge
ist rekursiv durch die Gleichungen
,
und
für
definiert, was gleichbedeutend ist mit
und
,
woraus durch Iteration die nichtrekursive Formel
folgt, in der die -te
Potenz einer Matrix
vorkommt.
Das Verhalten einer solchen Matrix bei Potenzierung ist nicht leicht zu
erkennen; hingegen wird die -te
Potenz einer Diagonalmatrix einfach durch Potenzierung jedes einzelnen
Diagonaleintrags berechnet. Wenn es nun eine invertierbare Matrix
gibt, sodass
Diagonalform hat, lässt sich die Potenzierung von
auf die Potenzierung einer Diagonalmatrix zurückführen gemäß der Gleichung
(die linke Seite dieser Gleichung ist dann die
-te
Potenz einer Diagonalmatrix). Allgemein lässt sich durch Diagonalisierung
einer Matrix ihr Verhalten (bei Potenzierung, aber auch bei anderen Operationen)
leichter erkennen.
Fasst man
als Matrix
einer linearen Abbildung auf, so ist die Transformationsmatrix
die Basiswechselmatrix zu einer anderen Basis
,
also
(wobei die Identitätsabbildung
jeden Vektor auf sich selbst abbildet). Dann ist nämlich
.
Im oben genannten Beispiel lässt sich eine Transformationsmatrix
finden, sodass
eine Diagonalmatrix ist, in der der goldene
Schnitt
vorkommt. Hieraus erhält man schließlich die Formel von Binet:
Eigenwerte
Wie kommt man von der Matrix
auf die Zahl
?
An der Diagonalmatrix erkennt man sofort
,
dass es also einen Vektor
ungleich Null gibt, der durch Multiplikation mit der Diagonalmatrix
komponentenweise vervielfacht (genauer: ver-
-facht)
wird:
.
Die Zahl
heißt wegen dieser Eigenschaft ein Eigenwert der Matrix
(mit Eigenvektor
).
Im Fall von Diagonalmatrizen sind die Eigenwerte gleich den Diagonaleinträgen.
ist aber auch zugleich Eigenwert der ursprünglichen Matrix
(mit Eigenvektor
,
denn
),
die Eigenwerte bleiben bei Transformation der Matrix also unverändert. Die
Diagonalform der Matrix
ergibt sich demnach aus deren Eigenwerten, und um die Eigenwerte von
zu finden, muss man untersuchen, für welche Zahlen
das lineare Gleichungssystem
eine von Null verschiedene Lösung
hat (oder, anders ausgedrückt, die Matrix
nicht invertierbar ist).
Die gesuchten Zahlen
sind genau diejenigen, die die Determinante der Matrix
zu Null machen. Diese Determinante ist ein polynomialer Ausdruck in
(das sogenannte charakteristische
Polynom von
);
im Falle der oben genannten 2×2-Matrix
ergibt dies die quadratische
Gleichung
mit den beiden Lösungen
und
.
Die zugehörigen Eigenvektoren sind Lösungen der linearen Gleichungssysteme
beziehungsweise
,
sie bilden dann die Spalten der Transformationsmatrix
.
Diagonalisierbarkeit
Ob eine Matrix diagonalisierbar ist, hängt vom verwendeten Zahlbereich ab.
ist zum Beispiel über den rationalen
Zahlen nicht diagonalisierbar, weil die Eigenwerte
und
irrationale Zahlen sind. Die Diagonalisierbarkeit kann aber auch unabhängig vom
Zahlbereich scheitern, wenn nicht „genügend“ Eigenwerte vorhanden sind; so hat
etwa die Jordanform-Matrix
nur den Eigenwert
(als Lösung der quadratischen Gleichung
)
und ist nicht diagonalisierbar. Bei genügend großem Zahlbereich (zum Beispiel
über den komplexen
Zahlen) lässt sich aber jede Matrix diagonalisieren oder in jordansche
Normalform transformieren.
Da die Transformation einer Matrix dem Basiswechsel einer linearen Abbildung entspricht, besagt diese letzte Aussage, dass man zu einer linearen Abbildung bei genügend großem Zahlbereich stets eine Basis wählen kann, die „auf einfache Weise“ abgebildet wird: Im Fall der Diagonalisierbarkeit wird jeder Basisvektor auf ein Vielfaches von sich abgebildet (ist also ein Eigenvektor); im Fall der Jordanform auf ein Vielfaches von sich plus evtl. den vorigen Basisvektor. Diese Theorie der linearen Abbildung lässt sich auf Körper verallgemeinern, die nicht „genügend groß“ sind; in ihnen müssen neben der Jordanform andere Normalformen betrachtet werden (zum Beispiel die Frobenius-Normalform).
Literatur
- Albrecht Beutelspacher: Lineare Algebra. Vieweg-Verlag, ISBN 978-3-658-02412-3.
- Egbert Brieskorn: Lineare Algebra und analytische Geometrie. Band 1, Vieweg-Verlag, 2012, ISBN 978-3-322-83175-0.
- Egbert Brieskorn: Lineare Algebra und analytische Geometrie. Band 2, Vieweg-Verlag, 1985, ISBN 978-3-528-08562-9.
- Günter Gramlich: Lineare Algebra. Carl Hanser Verlag, ISBN 978-3-446-44140-8.
- Günter Gramlich: Anwendungen der Linearen Algebra. Carl Hanser Verlag, ISBN 978-3-446-22655-5.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 05.09. 2022