Hauptachsentransformation
Die Hauptachsentransformation (HAT) ist in der euklidischen Geometrie ein Verfahren, mit dem man die Gleichungen von Quadriken (Ellipse, Hyperbel, …; Ellipsoid, Hyperboloid, …) durch eine geeignete Koordinatentransformation auf die jeweilige Normalform bringt und damit ihren Typ und ihre geometrischen Eigenschaften (Mittelpunkt, Scheitel, Halbachsen) bestimmen kann. Damit Längen und Winkel bei der Transformation nicht verändert werden, muss man orthogonale Koordinatentransformationen (Drehungen, Spiegelungen, Verschiebungen) verwenden (s. u.). Das wesentliche Hilfsmittel dieses Verfahrens ist die Diagonalisierung einer symmetrischen Matrix mit Hilfe einer orthogonalen Matrix.

Neben der rein mathematisch-geometrischen Bedeutung der Hauptachsentransformation zur Bestimmung des Typs von Quadriken wird sie in zahlreichen Disziplinen der theoretischen Physik sowie in der Informatik und den Geowissenschaften eingesetzt (s. Abschnitt Anwendung).
Einfache Beispiele und Motivation des Verfahrens
Beispiel 1
Dass die Gleichung
den Kreis mit Mittelpunkt
und Radius
beschreibt, erkennt man leicht, indem man die Gleichung durch quadratische
Ergänzung auf die Form
bringt.

Beispiel 2
Auch die Gleichung
lässt sich durch quadratische Ergänzung auf die Form
bringen und man erkennt, dass es sich um eine Ellipse mit Mittelpunkt
und den Halbachsen
handelt.
Beispiel 3
Deutlich schwieriger ist es, der Gleichung
anzusehen, dass es sich um eine Ellipse mit den Halbachsen
handelt. Das Problem rührt von dem „gemischten“ Term
her. Er ist ein Zeichen dafür, dass die zueinander senkrechten Hauptachsen in
diesem Fall nicht parallel zu den Koordinatenachsen sind. Dies lässt sich durch
Anwendung einer geeigneten Drehung des Koordinatensystems (um den Nullpunkt)
ändern. Der Drehwinkel ergibt sich aus den Koeffizienten bei
(s. Kegelschnitte).
Dieses anschauliche Verfahren wird aber bei der Untersuchung von Quadriken im
euklidischen Raum sehr unübersichtlich. Die Lineare Algebra stellt ein Verfahren
zur Verfügung, das in jeder Dimension anwendbar ist: die Diagonalisierung
symmetrischer Matrizen. Hierzu schreibt man die Gleichung der Quadrik mit
Hilfe einer symmetrischen Matrix: Auf der Diagonalen der Matrix stehen
die Koeffizienten von
,
auf der Nebendiagonale jeweils die Hälfte des Koeffizienten von
.
Nun diagonalisiert man die Matrix
durch Anwendung einer orthogonalen Koordinatentransformation (Drehung
oder Drehspiegelung im
).
Bei einer orthogonalen Koordinatentransformation werden Längen nicht verändert,
sodass man nach der Transformation und einer eventuell nötigen quadratischen
Ergänzung (s. oben) die Längen der Halbachsen und Lagen von Mittelpunkt und
Scheitel ablesen kann.
Diagonalisierung einer symmetrischen Matrix (Hauptachsentheorem)
Zu einer symmetrischen -Matrix
gibt es immer eine orthogonale
Matrix
so, dass
eine Diagonalmatrix ist. Die Hauptdiagonale der Diagonalmatrix
besteht aus den Eigenwerten
der Matrix
.
Eine symmetrische
-Matrix
besitzt immer
reelle Eigenwerte unter Beachtung der jeweiligen Vielfachheit. Für die Matrix
wählt man als Spaltenvektoren
orthonormierte Eigenvektoren
der Matrix. (Eigenvektoren einer symmetrischen Matrix zu verschiedenen
Eigenwerten sind immer orthogonal. Falls ein Eigenraum eine Dimension größer als
1 hat, muss man mit Hilfe des Gram-Schmidtschen
Orthogonalisierungsverfahrens eine Orthonormalbasis des Eigenraums
bestimmen.) Die Determinante von
ist
.
Damit im ebenen Fall
eine Drehmatrix ist, muss man die Orientierungen der benutzten
Eigenvektoren so wählen, dass
ist.
Interpretiert man die Matrix
als lineare Abbildung im
,
so kann man die Matrix
als eine Transformation auf die neue Basis
auffassen. Zwischen den alten und neuen Koordinaten besteht die Beziehung
.
Die Wirkung der Matrix
im neuen Koordinatensystem übernimmt die Diagonalmatrix
.
Eine wichtige Eigenschaft der (orthogonalen!) Matrix
ist
.
Damit lassen sich auch leicht alte Koordinaten in neue umrechnen:
.
Die Gleichung einer Quadrik
/DD>
hat einen quadratischen Anteil ,
der durch eine (o.B.d.A.
symmetrische) Matrix
beschrieben werden kann. Mit dem Hauptachsentheorem wird dieser quadratische
Anteil in die „Diagonalgestalt“
transformiert. Es kommen danach also keine gemischten Terme
mit
mehr vor.
Hauptachsentransformation eines Kegelschnitts
Beschreibung der Methode
Ein Kegelschnitt im
genügt einer Gleichung
.
Diese Gleichung lässt sich in Matrizenform so schreiben:
- 1. Schritt
- Setze
.
- 2. Schritt
- Bestimme die Eigenwerte der Matrix
als Lösungen der Eigenwertgleichung
. Die Eigenwerte seien
.
- 3. Schritt
- Bestimme normierte Eigenvektoren aus den 2 Gleichungssystemen:
- 4. Schritt
- Setze
und ersetze
durch
mit Hilfe von
.
- 5. Schritt
- Es ergibt sich die Gleichung des Kegelschnitts in den neuen Koordinaten:
- Da der quadratische Teil in dieser Gleichung durch die Eigenwerte als
Koeffizienten und das Verschwinden des gemischten Teils festliegt, müssen nur
im linearen Teil
die alten Koordinaten x und y ersetzt werden.
- 6. Schritt
- Durch quadratische Ergänzung erhält man die Mittelpunkts- bzw. Scheitelform des Kegelschnitts und kann Mittelpunkt (bei Ellipse, Hyperbel, …) bzw. Scheitel (bei Parabel) und eventuell Halbachsen ablesen.
- 7. Schritt
- Mit Hilfe der Beziehung
lassen sich schließlich die
Koordinaten von Mittelpunkt und Scheitel berechnen.
Beispiel 3 (Fortsetzung)

- 1. Schritt
- 2. Schritt
- 3. Schritt
- Ein normierter Eigenvektor zu
ergibt sich aus dem linearen Gleichungssystem
zu
.
- Ein normierter Eigenvektor zu
ergibt sich aus dem linearen Gleichungssystem
zu
.
- 4. Schritt
und aus
ergibt sich:
- Wegen
ist die Transformation eine Drehung und zwar um den Winkel
. Letzteres folgt aus
(s. Drehmatrix).
- 5. Schritt
- 6. Schritt
- Da in der letzten Gleichung weder
noch
linear vorkommen, ist keine quadratische Ergänzung nötig.
- Ergebnis: Der Kegelschnitt ist eine Ellipse mit Mittelpunkt im
Nullpunkt und den Halbachsen
. Die Scheitel sind in
Koordinaten:
- 7.Schritt
- Die
Koordinaten der Scheitel sind (s. 4.Schritt):
Bemerkung: Das neue Koordinatensystem und die Matrix S sind nicht eindeutig bestimmt. Beide hängen von der Reihenfolge der Eigenwerte und der Orientierung der gewählten Eigenvektoren ab. Die Lage des Kegelschnitts (Mittelpunkt, Scheitel) im x-y-Koordinatensystem ist aber durch die gegebene Kegelschnittgleichung eindeutig bestimmt.
Beispiel 4: Hyperbel

Der Kegelschnitt hat die Gleichung:
- 1. Schritt
- 2. Schritt
- 3.Schritt
- 4. Schritt
- 5. Schritt
- 6. Schritt
- Der Kegelschnitt ist eine Hyperbel mit dem Mittelpunkt
und den Halbachsen
.
- 7. Schritt
Die x-y-Koordinaten des Mittelpunktes sind
(s. 4. Schritt).
Beispiel 5: Parabel

Der Kegelschnitt hat die Gleichung:
Es ist
.
Die zugehörigen Eigenwerte sind
und die Transformationsmatrix ist
.
In
Koordinaten
genügt der Kegelschnitt der Gleichung:
Also ist der Kegelschnitt eine Parabel mit dem Scheitel
bzw. in x-y-Koordinaten
.
Die Matrix
beschreibt eine Drehung um den Winkel
.
Hauptachsentransformation von Flächen
Die Hauptachsentransformation für Quadriken im Raum läuft nach der gleichen Methode ab wie im ebenen Fall für Kegelschnitte. Allerdings sind die Rechnungen deutlich umfangreicher.
Beispiel: Hyperboloid
Mit Hilfe der Hauptachsentransformation soll festgestellt werden, welche Fläche durch die folgende Gleichung beschrieben wird:
- 1. Schritt
- 2. Schritt
- Die Eigenwerte sind:
- 3. Schritt
Bestimmung der Eigenvektoren:
- zu
- zu
- und zu

- 4. Schritt
- 5. Schritt
- 6. Schritt
Die Quadrik ist ein einschaliges Hyperboloid
(s. Liste der Quadriken) mit dem Mittelpunkt
im Nullpunkt, den Halbachsen ,
den Scheiteln
und den Nebenscheiteln
.
- 7. Schritt
Mit den Beziehungen in Schritt 4 erhält man die Scheitel bzw. Nebenscheitel
in x-y-z-Koordinaten:
(der Mittelpunkt ist der Nullpunkt).
Beispiel: Kegel
Gegeben sei die Gleichung
Mittels Hauptachsentransformation soll diese Gleichung nun in eine Normalform überführt werden und der Typ der durch die Gleichung dargestellten Quadrik bestimmt werden.
- 1. Schritt
- 2. Schritt
- Die Eigenwerte der Matrix
sind
.
- 3. Schritt
Der Eigenraum zu
ist Lösung der (einen!) Gleichung
.
Es müssen zwei zueinander orthogonale Lösungsvektoren bestimmt werden. Eine
Lösung ist
.
Ein dazu orthogonaler Lösungsvektor muss zusätzlich die Gleichung
erfüllen. Offensichtlich erfüllt der Vektor
beide Gleichungen. Nun müssen beide Vektoren noch normiert werden:
Ein normierter Eigenvektor zu
ist
- 4. Schritt

- 5. Schritt
- 6. Schritt
Quadratische Ergänzung liefert
.
- Die Quadrik ist ein senkrechter Kreiskegel mit der Spitze im Punkt
und der
-Achse als Rotationsachse.
- 7. Schritt
Die Spitze ist in x-y-z-Koordinaten der Punkt .
Die Kegelachse hat die Richtung
.
Hauptachsentransformation in beliebiger Dimension
Eine Quadrik
im
ist (analog zu n=2) die Lösungsmenge einer allgemeinen quadratischen Gleichung
(s. Quadrik):
wobei
eine symmetrische
Matrix und
sowie
Spaltenvektoren
sind.
Die Hauptachsentransformation in diesem allgemeinen Fall läuft nach dem gleichen Schema ab wie für Kegelschnitte (s. o.). Nach der Diagonalisierung wird allerdings oft noch eine Verschiebung des Nullpunktes in den Mittelpunkt oder Scheitel der Quadrik vorgenommen, so dass die Normalform der Quadrik entsteht, an der man die Art und Eigenschaften der Quadrik ablesen kann.
Anwendung
In der theoretischen Physik wird die Hauptachsentransformation in der klassischen Mechanik zur Beschreibung der Kinematik starrer Körper verwendet: Hier können über eine Hauptachsentransformation des Trägheitstensors, der die Trägheiten des Körpers bezüglich Drehungen um verschiedene Achsen angibt, eventuell vorhandene Deviationsmomente – zum Beispiel bei einem Kreisel – zum Verschwinden gebracht werden.
Ein Deviationsmoment ist ein Maß für das Bestreben eines starren Körpers, seine Drehachse zu verändern. Deviationsmomente werden mit den Trägheitsmomenten in Trägheitstensoren zusammengefasst, wobei die Trägheitsmomente sich auf der Hauptdiagonalen des Tensors, die Deviationsmomente auf den Nebendiagonalen befinden. Wie oben gezeigt, kann der symmetrische Trägheitstensor auf eine Diagonalform gebracht werden. Die durch die Hauptachsentransformation festgelegten Achsen des neuen, angepassten Koordinatensystems bezeichnet man als Hauptträgheitsachsen, das neue Koordinatensystem als Hauptachsensystem. Die Diagonalelemente des transformierten Tensors werden konsequent Hauptträgheitsmomente genannt.
Auch in weiteren Teilgebieten der klassischen Mechanik wird die Hauptachsentransformation eingesetzt, so zum Beispiel in der Festigkeitslehre zur Berechnung der Hauptspannungen, die auf einen Körper einwirken. Häufig angewandt werden Hauptachsentransformationen weiterhin in der relativistischen Mechanik zur Basisdarstellung der Raumzeit im vierdimensionalen Minkowski-Raum oder zum Beispiel in der Elektrostatik beim Quadrupolmoment und anderen höheren Multipolmomenten.
Außerdem ist die Hauptachsentransformation in der multivariaten Statistik ein Teil der Hauptkomponentenanalyse, die vor allem in der Bildverarbeitung auch als Karhunen-Loève-Transformation bezeichnet wird. Manchmal werden die Begriffe synonym gebraucht, doch sind beide Transformationen nicht identisch.
Praktisch wird die Hauptachsentransformation als Teil der Hauptkomponentenanalyse dazu verwendet, die Größe umfangreicher Datensätze ohne wesentlichen Datenverlust zu vermindern. Dabei werden vorhandene Beziehungen zwischen einzelnen statistischen Variablen durch Überführung in ein neues, linear unabhängiges problemangepasstes Koordinatensystem so weit wie möglich reduziert. Beispielsweise kann die Anzahl der benötigten Signalkanäle verringert werden, indem diese nach Varianz geordnet und die Kanäle geringster Varianz gegebenenfalls ohne relevanten Datenverlust aus dem Datensatz entfernt werden. Dadurch können Effizienz und Ergebnis einer späteren Analyse der Daten verbessert werden.
In der elektronischen Bildverarbeitung wird die Reduktion der Datensatzgröße durch Hauptkomponentenanalysen besonders in der Fernerkundung durch Satellitenbilder sowie den zugehörigen naturwissenschaftlichen Disziplinen der Geodäsie, Geographie, Kartografie und Klimatologie eingesetzt. Hier kann die Qualität der Satellitenaufnahmen durch Unterdrückung des Rauschens mittels Hauptkomponentenanalyse deutlich verbessert werden.
In der Informatik wird die Hauptachsentransformation vor allem bei der Mustererkennung und in der neuronalen Netztheorie, also der Schaffung künstlicher neuronaler Netze, einem Teilgebiet der künstlichen Intelligenz, zur Datenreduktion angewandt.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 25.05. 2022