Familie (Mathematik)
Der Begriff der Familie wird in der Mathematik unmittelbar aus dem Grundbegriff der Funktion abgeleitet. Die beiden Begriffe stimmen in vieler Hinsicht überein. Der Unterschied zwischen beiden liegt dabei einerseits im Formalen, also in der Schreib- und Sprechweise, und andererseits in der Verwendung und der dadurch suggerierten Bedeutung. Besonders häufig ist die Darstellung der Familie als Menge von Wertepaaren, wobei die unabhängige(n) Variable(n) als Index (Indizes) der abhängigen Variable notiert sind. Wenn die so dargestellte Funktion nicht injektiv ist, enthält die Mengendarstellung Elemente, die sich paarweise nur durch den Index unterscheiden.
Davon abweichend versteht man unter einer „Familie von Mengen“ oder „Mengenfamilie“ teilweise eine Menge von Mengen (ein sogenanntes Mengensystem), oder eine Mengenfamilie.
Eigenschaften
Die Schreibweise besteht aus
- einem indizierten Elementsymbol in runden Klammern,
- der Angabe des Definitionsbereiches des Index im Subskript (also rechts unten) dieses Klammerausdruckes und
- der Angabe der Quellmenge der Elemente der Familie (informell im Kontext oder formal).
Beispiel:
mit
für alle
,
sie entspricht der Funktion
.
Die
nennt man die Mitglieder oder die Terme der Familie und sie sind
Elemente aus der Quellmenge oder der indizierten Menge
,
heißt Index und
die Indexmenge oder der Indexbereich. Eine Sprechweise für dieses
Beispiel wäre: „Eine Familie von Elementen
aus
mit Index
aus der Indexmenge
.“
Die Angabe des Definitionsbereiches des Index wird, falls dieser keine Rolle
spielt oder sich aus dem Zusammenhang ergibt, gelegentlich auch weggelassen:
Beispiel: .
Davon zu unterscheiden (was nicht immer gemacht wird) ist die Menge aller Mitglieder der Familie, die eine Teilmenge der Quellmenge ist:
Beispiel: .
Manche Autoren
schreiben Familien in der Form ,
was jedoch die Gefahr in sich birgt, dass der Leser dies mit der Menge
verwechseln könnte.
Das Charakteristikum von Familien ist folgendes:
Zwei Familien
und
sind genau dann gleich, wenn
und
für jedes
gilt.
Schematisch lassen sich die Schreibweisen für Funktionen und Familien so gegenüberstellen:
Funktion | Familie |
---|---|
|
|
Bild oder Wert |
Term oder Mitglied |
Definitionsbereich |
Indexmenge |
Bild- oder Wertebereich |
Quellmenge oder indizierte Menge |
Einschränkung |
Teilfamilie |
Allgemeiner gesprochen gibt es drei Interpretationen von linkstotalen und rechtseindeutigen Relationen, nämlich als:
- Funktion (Abbildung von I nach A),
- Belegung (von I durch A),
- Indizierung (A indiziert durch I).
Eine Familie ist die Indizierungsinterpretation einer Funktion mit einer speziellen Notation, bei der kein spezielles Funktionssymbol wie bei der Abbildungsnotation benutzt wird.
Die Betonung liegt hier auf Interpretation. Es werden hier keine neuen mathematischen Begriffe eingeführt, sondern nur alternative Sichtweisen des gleichen formalen Sachverhalts gegeben. Der Sinn dieser alternativen Sichtweisen liegt in einer bequemeren Handhabbarkeit in speziellen Anwendungssituationen, insbesondere beim kalkülmäßigen Rechnen.
Für die Menge der mit der Indexmenge I indizierten Familien, deren Mitglieder
alle in A liegen, schreibt man .
Sind A und I endliche Mengen, dann gilt für ihre Mächtigkeit :
.
Beispiele für Familien und Anwendungssituationen
Beispiele und Fälle
- Familien mit endlichen
Indexmengen, meist
oder
, heißen Listen und die leere Familie
leere Liste, dabei kann die jeweils indizierte Quellmenge jedoch beliebig sein. Eine Liste bezeichnet man auch als endliche Folge und für
wird ebenso
,
oder das Tupel
geschrieben, für die leere Folge
. Eine Liste lässt sich außerdem als ein Wort über der jeweils indizierten Quellmenge auffassen.
- Eine unendliche Folge,
oft einfach nur Folge genannt, ist eine Familie, deren Indexmenge abzählbar
unendlich ist, in der Regel die Menge der natürlichen
Zahlen
oder
. Analog zu Listen können unendliche Folgen
auch in der Form
oder wie endlose Tupel
geschrieben werden. Die Mitglieder von unendlichen und von endlichen Folgen heißen Glieder.
- Matrizen
sind Listen mit Indexmengen, die das kartesische
Produkt zweier endlicher Mengen sind. Hat z.B. eine Liste die
Indexmenge
, so nennt man sie eine
-Matrix und sie hat eine Darstellung
, die Teillisten
heißen dann Zeilen und die Teillisten
Spalten der Matrix.
Typische Anwendung findet die Familien-Schreibweise bei:
- Summe und Produkt von Zahlen.
- Summe und Produkt von Matrizen.
- Durchschnitt und Vereinigung von Mengen.
Oftmals wird fälschlicherweise von einer Menge
gesprochen, wenn eine Familie gemeint und erforderlich ist. Würde man etwa in
der Theorie der Vektorräume
den Begriff lineare
Unabhängigkeit für Mengen statt Familien von Vektoren definieren, könnte
man noch nicht einmal formulieren, dass zwei vom Nullvektor verschiedene
Vektoren u.a. dann linear abhängig sind, wenn sie gleich sind. In dem Fall
würden sie zusammen nämlich nur eine einelementige Menge bilden, die dann linear
unabhängig ist. Umgekehrt kann man bei Bedarf eine Menge
jederzeit als Familie auffassen, indem man sie durch sich selbst indiziert
mittels
,
der identischen Abbildung auf
:
.
Familien paarweise disjunkter Teilmengen
Wenn
eine Familie von Mengen mit den Eigenschaften
und
sein soll, dann ist sie nach der in diesem Artikel vorgestellten Darstellung
eine Funktion
mit sehr speziellen Eigenschaften, und
.
Eine alternative Repräsentation
ist in diesem Fall eine Funktion
.
Hiermit ist
und die paarweise Disjunktheit ergibt sich automatisch.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 29.08. 2021