Kronecker-Delta
Das Kronecker-Delta ist ein mathematisches
Zeichen, das durch ein kleines Delta
mit zwei Indizes
(typischerweise )
dargestellt wird und nach Leopold
Kronecker benannt ist. Es wird manchmal auch als Kronecker-Symbol
bezeichnet, obwohl es noch ein anderes Kronecker-Symbol
gibt.
Der auch gebräuchliche Begriff Deltafunktion ist irreführend, weil damit häufiger die Delta-Distribution bezeichnet wird.
Es wird vor allem in Summenformeln im Zusammenhang mit Matrix- oder Vektoroperationen verwendet, oder um Fallunterscheidungen in Formeln zu vermeiden.
Definition
Sei eine beliebige Indexmenge
und ein Ring
mit Nullelement
und Einselement
gegeben. Seien ferner
.
Das Kronecker-Delta ist definiert als:
Bei der Indexmenge handelt es sich meist um eine endliche Teilmenge der natürlichen Zahlen.
Eigenschaften
Das Kronecker-Delta kann in der Form
,
geschrieben werden, ist also die charakteristische
Funktion
der Diagonalmenge
.
Häufig wird dabei an Stelle von
ein erweiterter Bildraum, z.B. die reellen Zahlen, betrachtet.
Für Produkte von Kronecker-Deltas mit
und
für alle
mit Indexmengen
gilt
Dieser Ausdruck vergleicht quasi jedes
mit dem feststehenden
und ist nur dann 1, wenn alle Ausdrücke gleich sind, weshalb statt
ein beliebiges
(ausgedrückt als
)
dafür eingesetzt werden kann.
Für beispielsweise
mit
bedeutet das (nach Streichung der gleichen Indizes):
Dieser Ausdruck ist genau dann (und nur dann) 1, wenn
gilt. Wird das Kronecker-Delta zusammen mit der einsteinschen
Summenkonvention verwendet, so ist diese Aussage nicht korrekt. Auf das
Kronecker-Delta zusammen mit der einsteinschen Summenkonvention wird im
Abschnitt „Als
(r,s)-Tensor“ eingegangen.
Trivialerweise gilt auch (für ):
Als (r,s)-Tensor
Betrachtet man das Kronecker-Delta auf einem endlichdimensionalen Vektorraum ,
so kann man es als (0,2)-Tensor
verstehen. Als multilineare Abbildung
ist das Kronecker-Delta durch seine Wirkung auf die Basisvektoren eindeutig bestimmt und es gilt
Das Kronecker-Delta als (0,2)-Tensor ist ein Spezialfall der allgemeinen Definitionen vom Artikelanfang. Ist nämlich in der allgemeinen Definition die Indexmenge endlich und werden durch diese endlichdimensionale Vektoren indiziert, dann sind die allgemeine Definition und die Sichtweise als (0,2)-Tensor gleich. Eine andere Erweiterung des als Tensor aufgefassten Kronecker-Deltas ist das Levi-Civita-Symbol.
Im Zusammenhang mit dem Tensorkalkül wird oftmals die einsteinsche Summenkonvention verwendet, bei dieser wird über doppelt auftretende Indizes summiert. Das heißt, in einem n-dimensionalen Vektorraum gilt
Meistens wird bei dieser Summenkonvention auch darauf geachtet, welche
Indizes oben und welche unten stehen und es wird nur summiert, wenn der gleiche
Index einmal oben und einmal unten steht. Im Fall des Kronecker-Deltas müsste es
dann also
lauten.
Integral- und Summendarstellung
Wählt man als Indexmenge die Menge der ganzen
Zahlen ,
dann kann das Kronecker-Delta mithilfe eines Kurvenintegrals
dargestellt werden. Es gilt nämlich
wobei die Kurve, die auf dem Kreis
verläuft, gegen den Uhrzeigersinn gerichtet ist. Diese Darstellung kann mithilfe
des Residuensatzes bewiesen
werden.
Manchmal ist auch eine Darstellung in der Form
hilfreich. Diese kann mit Hilfe der Partialsummenfolge der geometrischen Reihe hergeleitet werden.
Beispiele
- In der linearen
Algebra kann die
-Einheitsmatrix als
geschrieben werden.
- Mit dem Kronecker-Delta kann man das Skalarprodukt
orthonormierter Vektoren
als
schreiben.
Alternative Definition in der digitalen Signalverarbeitung
In der digitalen
Signalverarbeitung wird eine andere ähnliche Definition des Kronecker-Deltas
verwendet. Das Kronecker-Delta wird hier als Funktion auf
verstanden und ist definiert durch
Die Funktion wird in diesem Zusammenhang als „Einheitsimpuls“ bezeichnet und dient der Ermittlung der Impulsantwort in diskreten Systemen wie beispielsweise digitalen Filtern.
Siehe auch
- Die Delta-Distribution bildet ein Analogon in der Distributionentheorie, sie verhält sich unter Integration wie das Kronecker-Delta unter Summation über alle möglichen Werte für einen der beiden Parameter.
- Das Dirac-Maß dagegen bildet ein Analogon in der Maßtheorie, es verhält sich unter Integration bezüglich des Maßes analog zum Kronecker-Delta.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 21.01. 2021