Parallelogramm
![01-Parallelogramm.svg](bilder/350px-01-Parallelogramm.svg.png)
Ein Parallelogramm (von altgriechisch παραλληλό-γραμμος paralleló-grammos „von zwei Parallelenpaaren begrenzt“) oder Rhomboid (rautenähnlich) ist ein konvexes ebenes Viereck, bei dem gegenüberliegende Seiten parallel sind.
Parallelogramme sind spezielle Trapeze und zweidimensionale Parallelepipede. Rechteck, Raute (Rhombus) und Quadrat sind Spezialfälle des Parallelogramms.
Eigenschaften
Ein Viereck ist genau dann ein Parallelogramm, wenn eine der folgenden Bedingungen erfüllt ist:
- Gegenüberliegende Seiten sind gleich lang und keine zwei gegenüberliegende Seiten schneiden sich (kein überschlagenes Viereck, sogenanntes Antiparallelogramm).
- Zwei gegenüberliegende Seiten sind parallel und gleich lang.
- Gegenüber liegende Winkel sind gleich groß.
- Je zwei benachbarte Winkel ergeben zusammen 180°.
- Die Diagonalen halbieren einander.
- Die Summe der Flächen der Quadrate über den vier Seiten ist gleich der Summe der Flächen der Quadrate über den zwei Diagonalen (Parallelogrammgleichung).
- Es ist punktsymmetrisch (zweizählig drehsymmetrisch).
Für jedes Parallelogramm gilt:
- Jede Diagonale teilt es in zwei gleichsinnig kongruente Dreiecke.
- Sein Symmetriezentrum ist der Schnittpunkt der Diagonalen.
- Die Mittelpunkte der über seinen Seiten errichteten Quadrate bilden ein Quadrat (Satz von Thébault-Yaglom).
Alle Parallelogramme, die mindestens eine Symmetrieachse besitzen, sind Rechtecke oder Rauten.
Formeln
Mathematische Formeln zum Parallelogramm | ||
---|---|---|
Flächeninhalt | Über Transformation in ein Rechteck mit der Determinante: |
![]() |
Umfang | ||
Innenwinkel | ||
Höhe | ||
Länge der Diagonalen
(siehe Kosinussatz) |
||
Parallelogrammgleichung |
Beweis der Flächenformel für ein Parallelogramm
![](bilder/350px-01-Parallelogramm_Konstruktion.gif)
![](bilder/Parallelogrammflaeche.png)
Den Flächeninhalt
des nebenstehenden schwarzen Parallelogramms kann man erhalten, indem man von
der Fläche des großen Rechtecks
die sechs kleinen Flächen mit bunten Kanten abzieht. Wegen der Symmetrie und der
Vertauschbarkeit der Multiplikation
kann man auch vom großen Rechteck das Doppelte der drei kleinen Flächen
unterhalb des Parallelogramms abziehen. Es ist also:
Parallelogrammgitter
![](bilder/220px-Oblique_Lattice.svg.png)
Parallelogramme können ein Gitter in der Ebene bilden. Wenn die Kanten gleich lang sind oder die Winkel rechte Winkel sind, ist die Symmetrie des Gitters höher. Diese repräsentieren die vier zweidimensionalen Bravais-Gitter.
Geometrische Figur | Quadrat | Rechteck | Raute | Parallelogramm |
---|---|---|---|---|
Bravais-Gitter | quadratisches Bravais-Gitter | rechtwinkliges Bravais-Gitter | zentriert-rechtwinkliges Bravais-Gitter | schiefwinkliges Bravais-Gitter |
Kristallsystem | tetragonales Kristallsystem | orthorhombisches Kristallsystem | orthorhombisches Kristallsystem | monoklines Kristallsystem |
Bild | ![]() |
![]() |
![]() |
![]() |
Das Parallelogrammgitter ist eine Anordnung von unendlich vielen Punkten in der zweidimensionalen euklidischen Ebene. Diese Punktmenge kann formal als die Menge
geschrieben werden, wobei die Vektoren ,
die Richtungsvektoren
zwischen benachbarten Punkten sind. Das Parallelogrammgitter entsteht durch eine
affine
Abbildung aus dem Quadratgitter.
Das Parallelogrammgitter ist zweizählig drehsymmetrisch, also punktsymmetrisch. Außerdem ist es translationsymmetrisch für alle Vektoren im zweidimensionalen euklidischen Vektorraum.
Konstruktion eines Parallelogramms
Ein Parallelogramm, bei dem die Seitenlängen
und
sowie die Höhe
gegeben ist, ist mit Zirkel
und Lineal konstruierbar.
![](bilder/350px-01-Parallelogramm_Konstruktion.gif)
Verallgemeinerungen
Eine Verallgemeinerung auf
Dimensionen
ist das Parallelotop,
erklärt als die Menge
sowie deren Parallelverschiebungen.
Die
sind dabei
linear
unabhängige Vektoren. Parallelotope sind punktsymmetrisch.
Das dreidimensionale Parallelotop ist das Parallelepiped. Seine Seitenflächen sind sechs paarweise kongruente und in parallelen Ebenen liegende Parallelogramme. Ein Parallelepiped hat zwölf Kanten, von denen je vier parallel verlaufen und untereinander gleich lang sind, und acht Ecken, in denen diese Kanten in maximal drei verschiedenen Winkeln zueinander zusammenlaufen.
Satz von Varignon
![](bilder/174px-Rectangle-varignon.svg.png)
Nach dem Satz von Varignon gilt: Wenn man die Mittelpunkte benachbarter Seiten eines Vierecks verbindet, dann erhält man ein Parallelogramm.
Beweis
Nach Definition gilt .
Betrachte das Dreieck ABC. Es ist ähnlich
zum Dreieck EBF. Nimmt man den Punkt
B als Zentrum einer zentrischen
Streckung, werden A auf E und C auf F mit dem Faktor
abgebildet. Wegen der Eigenschaften der zentrischen Streckung sind Bildstrecke
und ursprüngliche Strecke
parallel.
Also ist
.
Ebenso zeigt man, dass
,
,
und
.
Die Parallelität
in der euklidischen
Ebene ist eine Äquivalenzrelation
und damit transitiv.
Also ist
und
.
Die gegenüber liegenden Seiten des Vierecks EFGH sind parallel, was der Definition eines Parallelogramms entspricht.
Eine andere Möglichkeit ist, mit dem Strahlensatz
zu beweisen, dass
und
ist, d. h. dass die gegenüber liegenden Seiten des Vierecks EFGH gleich lang
sind.
Nach dem Strahlensatz gilt außerdem: Der Umfang des Parallelogramms EFGH ist genau so groß wie die Summe der Diagonalenlängen im Viereck ABCD. Die Fläche des Parallelogramms EFGH ist halb so groß wie die Fläche des Vierecks ABCD.
Verwendung in der Technik
Parallelogramme finden sich häufig in der Mechanik. Durch vier Gelenke kann eine bewegliche, parallelentreue Lagerung hergestellt werden, die sogenannte Parallelogrammführung. Beispiele:
-
Schaltparallelogramm einer Kettenschaltung
-
Parallel-Scheibenwischer
-
Hubarbeitsbühne
-
Pantograph
Siehe auch
Literatur
- F. Wolff: Lehrbuch der Geometrie. Vierte verbesserte Auflage, Druck
und Verlag von G. Reimer, Berlin 1845 (
Online-Kopie).
- P. Kall: Lineare Algebra für Ökonomen. Springer Fachmedien, Wiesbaden 1984, ISBN 978-3-519-02356-2.
- Wilhelm Killing: Lehrbuch Der Analytischen Geometrie. Teil 2, Outlook Verlagsgesellschaft, Bremen 2011, ISBN 978-3-86403-540-1.
![Trenner](/button/corpdivider.gif)
![Extern](/button/extern.png)
![Seitenende](/button/stonrul.gif)
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 18.09. 2022