Innenwinkel

Die Innenwinkel eines Polygons
sind in der Geometrie die Winkel, die durch zwei
benachbarte Polygonseiten eingeschlossen werden und im Inneren des Polygons
liegen. Die Ecken
des Polygons bilden dabei die Scheitelpunkte
der Innenwinkel. Jedes -Eck
besitzt genau
Innenwinkel. In einem nicht-überschlagenen
Polygon hängt die Innenwinkelsumme
nur von der Anzahl der Ecken des Polygons ab. Ein Nebenwinkel eines
Innenwinkels, der durch Verlängerung einer Polygonseite entsteht, wird Außenwinkel genannt.
Bezeichnungen
Werden die Ecken eines Polygons mit
bezeichnet, so werden die Innenwinkel meist
genannt. Die Ecke
ist dabei der Scheitelpunkt des Winkels
,
die Ecke
der Scheitelpunkt des Winkels
und so weiter. Bei einem Dreieck
wird die dem Winkel
gegenüberliegende Seite mit
bezeichnet, die dem Winkel
gegenüberliegende Seite mit
und so fort (siehe Abbildung).
Spezialfälle

- Sind in einem Dreieck alle Innenwinkel kleiner als
, heißt es spitzwinklig; misst einer der Innenwinkel genau
, rechtwinklig; und ist einer der Innenwinkel größer als
, stumpfwinklig. Bei einem gleichschenkligen Dreieck sind zwei der drei Innenwinkel gleich groß.
- Sind bei einem Viereck
je zwei gegenüber liegende Innenwinkel gleich groß, liegt ein Parallelogramm vor;
sind je zwei nebeneinander liegende Innenwinkel gleich groß, ein gleichschenkliges
Trapez. Bei einem Sehnenviereck
ergänzen sich je zwei gegenüberliegende Innenwinkel zu
.
- Bei einem gleichwinkligen Polygon sind alle Innenwinkel gleich groß. Wichtige Beispiele für gleichwinklige Polygone sind die regelmäßigen Polygone, beispielsweise das gleichseitige Dreieck, das Quadrat oder das regelmäßige Fünfeck, bei denen auch alle Seiten gleich lang sind.
- In einem konvexen
Polygon messen alle Innenwinkel höchstens
. Bei einem nichtkonvexen Polygon gibt es demnach mindestens eine einspringende Ecke mit einem Innenwinkel von mehr als
.
- Zwei Polygone sind nicht notwendigerweise zueinander ähnlich, wenn alle einander entsprechenden Innenwinkel übereinstimmen. Zum Beispiel sind Rechtecke mit verschiedenen Seitenverhältnissen nicht ähnlich zueinander.
Eigenschaften
Winkelsumme

Die Summe der Innenwinkel eines nicht überschlagenen
-Ecks
ergibt sich in der euklidischen
Geometrie stets zu
.
In einem Dreieck beträgt die Innenwinkelsumme daher immer ,
in einem Viereck immer
und in einem Fünfeck
immer
.
In einem gleichwinkligen (und damit speziell auch in einem regelmäßigen) Polygon
mit
Ecken ergeben sich damit alle Innenwinkel zu
.
In einem gleichseitigen Dreieck messen daher alle Innenwinkel ,
in einem Quadrat
und in einem regelmäßigen Fünfeck
.
Diese Aussagen gelten in nichteuklidischen
Geometrien jedoch nicht mehr. In einer elliptischen
Geometrie, beispielsweise auf einer Kugeloberfläche,
ist die Innenwinkelsumme stets größer als in der euklidischen Geometrie, in
einer hyperbolischen
Geometrie, beispielsweise auf einer Sattelfläche,
stets kleiner.
Winkelhalbierende

Die Winkelhalbierenden der Innenwinkel eines Tangentenvielecks, beispielsweise eines Dreiecks oder einer Raute, treffen sich im Inkreismittelpunkt des Vielecks.
In einem Dreieck teilt jede Innenwinkelhalbierende die gegenüberliegende Seite im Verhältnis der beiden anliegenden Seiten. Zudem schneidet sie die Winkelhalbierenden der beiden nicht anliegenden Außenwinkel im Mittelpunkt des Ankreises der gegenüberliegenden Seite.
Mathematische Sätze
Beziehungen zwischen den Innenwinkeln und den Seiten eines Dreiecks stellen unter anderem der Sinussatz, der Kosinussatz, der Tangenssatz, die Halbwinkelsätze und die mollweideschen Formeln her.
Nach dem Außenwinkelsatz ist jeder Außenwinkel eines Dreiecks gleich der Summe der beiden nichtanliegenden Innenwinkel. Nach dem Satz von Morley ist das Morley-Dreieck, welches durch Drittelung der drei Innenwinkel eines Dreiecks entsteht, stets gleichseitig.
In gleichwinkligen Polygonen gilt der Satz von Viviani, nach dem die Summe der Abstände von einem beliebigen Punkt im Inneren des Polygons zu den Polygonseiten unabhängig von der Position des Punkts ist.
Literatur
- Arnfried Kemnitz: Mathematik zum Studienbeginn. Springer, 2014, ISBN 978-3-658-02081-1.
- Ilka Agricola, Thomas Friedrich: Elementargeometrie. Springer, 2010, ISBN 978-3-8348-9826-5.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 12.05. 2022