σ-Algebra
Eine σ-Algebra, auch σ-Mengenalgebra, abgeschlossenes Mengensystem, Sigmakörper oder Borelscher Mengenkörper genannt, ist ein Mengensystem in der Maßtheorie, also eine Menge von Mengen. Eine σ-Algebra zeichnet sich durch die Abgeschlossenheit bezüglich gewisser mengentheoretischer Operationen aus. σ-Algebren spielen eine zentrale Rolle in der modernen Stochastik und Integrationstheorie, da sie dort als Definitionsbereiche für Maße auftreten und alle Mengen enthalten, denen man ein abstraktes Volumen beziehungsweise eine Wahrscheinlichkeit zuordnet.
σ-Algebren finden in vielen Teilbereichen der Mathematik Anwendung. So ermöglichen sie beispielsweise, die zeitliche Verfügbarkeit von Informationen durch Filtrierungen oder die Kompression von Daten durch die suffiziente σ-Algebra zu modellieren.
Definition
Sei
eine nichtleere Menge und sei
die Potenzmenge dieser
Menge.
Ein Mengensystem ,
also eine Menge von Teilmengen von
,
heißt σ-Algebra (auf oder über
),
wenn es die folgenden drei Bedingungen erfüllt:
enthält die Grundmenge. Es gilt also
ist stabil bezüglich der Komplementbildung. Ist also
, so ist auch
in
enthalten.
ist stabil bezüglich abzählbaren Vereinigungen. Sind also Mengen
-
in
enthalten, so ist auch
in
enthalten.
Motivation
Will man den intuitiven Volumenbegriff im
oder anderen Räumen mathematisch präzisieren, so fordert man meist folgende
Eigenschaften:
- Jede Menge
hat ein Volumen
.
soll verschiebungsinvariant sein, denn die Position einer Menge hat intuitiv keinen Einfluss auf ihr Volumen. Für
und
gilt also
. Ebenso soll das Volumen invariant unter Rotationen sein. Kongruente Mengen sollen also identische Volumina besitzen.
- Das Volumen ist normiert. So soll zum Beispiel der Einheitswürfel
das Volumen 1 besitzen.
- Die Vereinigung von abzählbar vielen disjunkten Mengen besitzt als Volumen genau die Summe der Volumina der einzelnen Mengen. Diese Eigenschaft heißt σ-Additivität und ist wichtig zur späteren Betrachtung von Grenzwerten.
Bei dieser impliziten Definition eines Volumenbegriffes stellt sich die Frage, ob solch eine Funktion überhaupt existiert. Diese Frage wird das Maßproblem genannt. Nach dem Satz von Vitali ist das Maßproblem aber unlösbar, es existiert also keine Abbildung mit den geforderten Eigenschaften.
Nun versucht man, durch eine sinnvolle Abschwächung der obigen Forderungen einen Volumenbegriff zu definieren, der einerseits noch unserem intuitiven Begriff weitestgehend entspricht, andererseits aber auch mathematisch wohldefiniert ist und eine fruchtbare Theorie des Maßes liefert. Hierzu schwächt man die erste der obigen Forderungen ab und akzeptiert, dass man nicht allen Mengen ein Volumen zuordnen kann. Man beschränkt sich dann auf ein Mengensystem von Mengen, die ein Volumen besitzen, das folgenden praktischen Überlegungen entspricht:
- Die Grundmenge soll ein (nicht notwendigerweise endliches) Volumen besitzen und demnach im Mengensystem enthalten sein.
- Besitzt die Menge
ein Volumen, so will man auch das Volumen des Komplements wissen. Also soll zu jeder Menge auch ihr Komplement im Mengensystem sein.
- Die vierte Bedingung in der oberen Aufzählung impliziert, dass wenn abzählbar viele Mengen ein Volumen besitzen, dann besitzt auch die Vereinigung dieser Mengen wieder ein Volumen und ist somit im Mengensystem enthalten.
Direkte Folgerungen daraus sind, dass auch die leere Menge und abzählbare Schnitte von Mengen mit Volumen wieder ein Volumen besitzen.
Diese Forderungen sind genau die definierenden Eigenschaften einer σ-Algebra. Somit sind σ-Algebren die Mengensysteme, auf denen man sinnvollerweise Volumenbegriffe und Maße definiert, um Widersprüche wie die durch den Satz von Vitali zu vermeiden.
Eigenschaften
Stabilität gegenüber Mengenoperationen
Aus den Bedingungen 1 und 2 der Definition folgt direkt, dass
immer das Komplement von
,
also die leere Menge
enthält.
Des Weiteren folgt aus den De Morganschen Gesetzen die Identität
Daher folgt aus Punkt 2 und 3 der Definition auch, dass σ-Algebren auch abgeschlossen bezüglich abzählbaren Durchschnitten sind.
Aus der Stabilität bezüglich abzählbarer unendlicher Schnittmengen und
Vereinigungen folgt auch direkt die Stabilität bezüglich endlich vielen
Schnitten oder Vereinigungen. Im Falle der Vereinigung setzt man
für alle
bei einem festgelegten
,
dann ist
Bei Schnitten ist das Vorgehen analog, man setzt dann
für alle
.
Damit sind σ-Algebren auch abgeschlossen gegen Mengendifferenz, denn es gilt
.
Mächtigkeit
Ist
eine endliche σ-Algebra, so gibt es immer eine nichtnegative ganze Zahl
mit
,
das heißt: Die Mächtigkeit
von
ist eine Zweier-Potenz.
Beispiele
Für jede beliebige Menge
ist
die kleinst mögliche σ-Algebra. Sie wird auch die triviale σ-Algebra genannt. Die Potenzmenge
ist die größte mögliche σ-Algebra mit
als Grundmenge.
Für jede beliebige Menge
und eine Teilmenge
ist
eine σ-Algebra. Sie ist die kleinste σ-Algebra, die
enthält.
Über einer Grundmenge
ist das Mengensystem
eine σ-Algebra. Hierbei bedeutet abzählbar, dass
endlich oder abzählbar unendlich ist.
Sind
und
zwei beliebige Mengen,
eine σ-Algebra in
und
eine Abbildung. Dann ist
eine σ-Algebra in .
Dies folgt direkt aus der Stabilität
des Urbildes bezüglich der Mengenoperationen. Sie ist ein einfaches Beispiel
einer Initial-σ-Algebra,
einem gängigen Verfahren zur Konstruktion von σ-Algebren.
Wichtigstes Beispiel in der Anwendung ist die borelsche σ-Algebra, die jedem topologischen Raum zugeordnet werden kann. Sie ist per Definition die kleinste σ-Algebra, die alle offenen Teilmengen enthält, kann aber nur sehr selten vollständig beschrieben werden.
Bedeutung
σ-Algebren bilden den Ausgangspunkt für die Definition des Maßraums und des Wahrscheinlichkeitsraums.
Das Banach-Tarski-Paradoxon
demonstriert, dass auf überabzählbaren
Mengen die durch die Potenzmenge gebildete σ-Algebra als Grundlage für die
Volumenbestimmung zu groß sein kann und die Betrachtung anderer σ-Algebren
mathematisch notwendig ist. In der Theorie der stochastischen
Prozesse, insbesondere in der stochastischen Finanzmathematik, wird
die bis zu einem Zeitpunkt prinzipiell beobachtbare Information durch eine
σ-Algebra beschrieben, was zum Begriff der Filtrierung,
also einer zeitlich aufsteigenden Familie von σ-Algebren führt. Filtrierungen
sind essentiell für die allgemeine Theorie der stochastischen
Integration; Integranden (also finanzmathematische Handelsstrategien) dürfen
zu einer Zeit
nur von den Informationen bis (ausschließlich)
abhängen; insbesondere dürfen sie nicht „in die Zukunft schauen“.
Operationen
Schnitte von σ-Algebren
Schnitte von zwei σ-Algebren
und
,
also das Mengensystem
,
sind stets wieder σ-Algebren. Denn ist exemplarisch ,
so ist
in
, da
auch in
ist.
in
, da
auch in
ist.
Somit ist
auch in
,
der Schnitt ist also komplementstabil. Die Stabilität bezüglich der anderen
Mengenoperationen folgt analog.
Die Aussage gilt ebenso für den Schnitt einer beliebigen Anzahl von σ-Algebren, da sich die obige Argumentation dann auf alle dieser σ-Algebra ausweiten lässt. Diese Eigenschaft bildet die Basis für den σ-Operator, vgl. unten.
Vereinigungen von σ-Algebren
Die Vereinigung zweier σ-Algebren
und
,
also das Mengensystem
ist im Allgemeinen keine σ-Algebra mehr. Betrachtet man beispielsweise die beiden σ-Algebren
sowie
,
so ist
.
Dieses Mengensystem ist weder vereinigungsstabil, da es
nicht enthält, noch ist es schnittstabil, da es
nicht enthält.
Produkte von σ-Algebren
Sind
und
Mengensysteme auf
und
und wird das Produkt von
und
definiert als
,
so ist das Produkt von zwei σ-Algebren im Allgemeinen keine σ-Algebra mehr, sondern lediglich ein Halbring. Denn betrachtet man
,
so enthält das Mengensystem
sowohl die Mengen
als auch
.
Die Menge
ist jedoch nicht enthalten, da sie sich nicht als kartesisches Produkt zweier
Mengen aus
darstellen lässt. Somit ist das Produkt nicht komplementstabil, kann folglich
auch keine σ-Algebra sein.
Das Produkt von σ-Algebren wird daher nicht als das kartesische Produkt der einzelnen σ-Algebren definiert, sondern über die Produkt-σ-Algebra. Diese verwendet die Mengensysteme der kartesischen Produkte als Erzeuger einer σ-Algebra. Im Falle des Produktes von endlich vielen σ-Algebren bedeutet dies, dass die Produkt-σ-Algebra die kleinste σ-Algebra ist, die alle kartesischen Produkte von Mengen der einzelnen σ-Algebren enthält.
σ-Operator
Für eine beliebige Teilmenge
der Potenzmenge
ist der
-Operator
definiert als
wobei
Da die Schnittmenge
einer Familie von σ-Algebren (über derselben Grundmenge )
wieder eine σ-Algebra ist, ist
somit die kleinste σ-Algebra, die
umfasst.
Der -Operator
erfüllt die fundamentalen Eigenschaften eines Hüllenoperators:
, also ist der
-Operator extensiv.
- Gilt
, so ist auch
(Monotonie bzw. Isotonie).
- Es ist
(Idempotenz).
wird als die von
erzeugte σ-Algebra bezeichnet,
heißt Erzeuger dieser σ-Algebra. Die Benennung als erzeugte σ-Algebra ist jedoch
nicht eindeutig, da auch die Initial-σ-Algebra
als die (von den Funktionen
)
erzeugte σ-Algebra bezeichnet wird.
In vielen Fällen lassen sich die Elemente von
nicht explizit angegeben.
Eine häufig angewendete Beweismethode für Aussagen, die für alle Elemente von
gelten, ist das Prinzip
der guten Mengen. Der Dynkinsche
π-λ-Satz trifft Aussagen darüber, wann eine erzeugte σ-Algebra und ein
erzeugtes Dynkin-System
übereinstimmen.
Spezielle σ-Algebren
Spur-σ-Algebren
Für
wird das Mengensystem
als Spur
von
in
bzw. Spur-σ-Algebra von
über
bezeichnet. Man kann zeigen, dass die Spur von
in
wieder eine σ-Algebra (aber mit der Grundmenge
)
ist, was den Namen „Spur-σ-Algebra“ rechtfertigt. Analog lässt sich die
Spur-σ-Algebra auch als Initial-σ-Algebra
bezüglich der natürlichen
Einbettung
auffassen. Ist
ein Erzeuger von
,
so gilt
.
Die Spur des Erzeugers erzeugt also die Spur-σ-Algebra.
Unter-σ-Algebren
Ist
eine σ-Algebra und gilt für ein Mengensystem
,
dass sowohl
ist als auch, dass
eine σ-Algebra ist, so heißt
eine Unter-σ-Algebra, Teil-σ-Algebra oder Sub-σ-Algebra von
.
Borelsche σ-Algebra
Die Borelsche σ-Algebra ist die in der Anwendung wichtigste σ-Algebra. Dies beruht auf der Tatsache, dass sie auf natürliche Weise mit dem entsprechenden zugrundeliegenden topologischen Raum verträglich ist und viele wichtige Mengen wie die offenen und die abgeschlossenen Mengen enthält. Des Weiteren lassen sich große Klassen von messbaren Funktionen für die Borelsche σ-Algebra angeben. Insbesondere sind alle stetigen Funktionen immer messbar bezüglich der Borelschen σ-Algebra.
Initial-σ-Algebren und Final-σ-Algebra
Die Initial-σ-Algebra ist eine σ-Algebra, die mittels Abbildungen auf einer Grundmenge definiert wird, auf der per se keine σ-Algebra existiert. Sie ist dann sogar die kleinste σ-Algebra, bezüglich derer die in der Konstruktion verwendeten Funktionen messbar sind. Das Gegenstück ist die Final-σ-Algebra, sie ist die größte σ-Algebra, so dass eine vorgegebene Menge an Funktionen messbar ist. Diese Konstruktion bildet somit ein Analogon zur Initialtopologie und zur Finaltopologie in der Topologie. Produkt-σ-Algebren und Spur-σ-Algebren lassen sich beide als Spezialfall von Initial-σ-Algebren auffassen.
Produkt-σ-Algebren
Produkt-σ-Algebren spielen dann eine Rolle, wenn Maße auf dem Produkt zweier Messräume definiert werden sollen. Da das Produkt von zwei σ-Algebren im Allgemeinen keine σ-Algebra ist, interessiert man sich für eine Erweiterung der Produkte der σ-Algebren auf den Produktraum. Diese Erweiterung ist dann die Produkt-σ-Algebra. Sie spielt eine wichtige Rolle bei der Definition von Produktmaßen, diese wiederum sind die Grundlage für den Satz von Fubini, die Modellierung mehrstufiger Experimente in der Stochastik und dienen als theoretische Grundlage der stochastischen Prozesse.
Separable σ-Algebren
Eine σ-Algebra, die einen abzählbaren Erzeuger besitzt, nennt man separabel.
Beispiel hierfür wäre die Borelsche σ-Algebra auf ,
die sie sich von Quadern mit rationalen Eckpunkten erzeugen lässt.
σ-Algebren in Teilgebieten der Mathematik
Innerhalb der Teilgebiete der Mathematik existiert noch eine Vielfalt von σ-Algebren. Die unten stehende Aufzählung dient dem groben Überblick.
Wahrscheinlichkeitstheorie
In der Wahrscheinlichkeitstheorie werden σ-Algebren teils Ereignissysteme genannt, da sie der stochastischen Nomenklatur entsprechend Ereignisse enthalten.
Weitere wichtige σ-Algebra in der Wahrscheinlichkeitstheorie ist die bei der Untersuchung von Grenzwerten auftretende Terminale σ-Algebra. Für eine Folge von σ-Algebren sagt sie aus, welche Mengen von allen endlichen Anfangsstücken der Folge unabhängig sind.
Theorie stochastischer Prozesse
Wichtigste Verwendung von σ-Algebren in der Theorie stochastischer Prozesse sind die Filtrierungen. Dabei handelt es sich um ineinander geschachtelte Familien von σ-Algebren, die modellieren, wie viel Information einem Stochastischen Prozess zu einem bestimmten Zeitpunkt zur Verfügung steht. So sorgen sie bei der Modellierung von Glücksspielen dafür, dass die teilnehmenden Spieler über keine Information des kommenden Spieles verfügen.
Weitere wichtige σ-Algebren sind die vorhersagbare σ-Algebra zur Formulierung von vorhersagbaren Prozessen in stetiger Zeit und die σ-Algebra der τ-Vergangenheit, die durch Kombination mit einer Stoppzeit entsteht.
Des Weiteren gibt es noch die austauschbare σ-Algebra, die nur Mengen enthält, die in dem Sinne austauschbar sind, als dass sie invariant gegen Permutationen endlich vieler Folgeglieder des stochastischen Prozesses sind.
Ergodentheorie
In der Ergodentheorie wichtige σ-Algebren sind die σ-Algebra der invarianten Ereignisse und P-triviale σ-Algebren. P-triviale σ-Algebren sind solche, die nur Mengen mit Wahrscheinlichkeit 0 oder 1 enthalten. Beide σ-Algebren werden zum Beispiel zur Definition von ergodischen Transformationen oder verwandten Grundbegriffen der Ergodentheorie genutzt.
Mathematische Statistik
In der mathematischen Statistik kommen mehrere verschiedene σ-Algebren vor. Eine von ihnen ist die suffiziente σ-Algebra. Sie enthält alle Mengen, die bezüglich einer gegebenen Verteilungsklasse Informationen enthalten. Somit können alle Mengen, die nicht in der σ-Algebra enthalten sind weggelassen werden, ohne dass ein Informationsverlust eintritt. Eine Verschärfung ist die minimalsuffiziente σ-Algebra, sie ist die (bis auf Nullmengen) kleinste suffiziente σ-Algebra. Außerdem existiert noch die verwandte stark suffiziente σ-Algebra, die unter Umständen mit der suffizienten σ-Algebra übereinstimmt. Gegenstück zur suffizienten σ-Algebra ist die verteilungsfreie σ-Algebr, sie trägt keine Informationen, ist also maximal uninformativ. Des Weiteren existiert beispielsweise noch die vollständige σ-Algebra.
Verwandte Mengensysteme
Dynkin-Systeme
Jede σ-Algebra ist immer auch ein Dynkin-System. Umgekehrt ist jedes durchschnittsstabile Dynkinsystem auch eine σ-Algebra. Ein Beispiel für ein Dynkin-System, das keine σ-Algebra ist, ist
auf der Grundmenge .
Das Mengensystem ist ein Dynkin-System, aber keine Algebra (da nicht
durchschnittsstabil) und damit auch keine σ-Algebra.
Es gilt außerdem der Dynkinsche
π-λ-Satz: Ist
ein durchschnittsstabiles Mengensystem, so stimmen die von
erzeugte σ-Algebra und das von
erzeugte
Dynkin-System überein.
Algebren
Jede σ-Algebra ist immer eine Mengenalgebra. Umgekehrt ist nicht jede Mengenalgebra eine σ-Algebra. Beispiel hierfür wäre
bei unendlicher Grundmenge .
σ-Ringe
Jede σ-Algebra ist per Definition ein σ-Ring, welcher die Grundmenge enthält. Nicht jeder σ-Ring ist eine σ-Algebra.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 15.09. 2022