Parität (Mathematik)

Eine ganze Zahl heißt gerade, wenn sie ohne Rest durch zwei teilbar ist; andernfalls heißt sie ungerade. Die Menge der ganzen Zahlen wird dadurch in zwei gleichmächtige disjunkte Teilmengen zerlegt. Diese Parität (von lateinisch: paritas „Gleichheit, gleich stark“) ist bei vielen Fragestellungen eine hilfreiche Invariante und zählt zu den wichtigen Hilfsmitteln in der elementaren Zahlentheorie.

Gerade und ungerade Zahlen

Definition

Eine natürliche oder ganze Zahl heißt gerade, wenn sie durch Zwei teilbar ist, ansonsten ungerade. Gerade Zahlen werden durch \pm 2k charakterisiert, ungerade Zahlen durch \pm 2k+1 für beliebiges k\in \mathbb{N} _{0}. Dementsprechend wird die Null als gerade angesehen.

Das heißt, ungerade Zahlen hinterlassen bei Division durch 2 stets einen Rest von 1, gerade Zahlen den Rest 0. Sie werden also durch ihre prime Restklasse modulo Zwei charakterisiert. Da (-1)^{0}=1 und (-1)^{1}=-1 gilt, wird die Parität manchmal auch mit positivem oder negativem Vorzeichen symbolisiert, siehe auch: Paritätsbit. Allerdings ist es falsch, das Vorzeichen von positiven und negativen Zahlen als Paritätseinteilung zu verstehen.

Rechenregeln

Die Rechenregeln für Paritäten folgen den Gesetzen des Restklassenkörpers mit den zwei Elementen Null und Eins. Diese stehen dabei für die entsprechenden Reste modulo 2 und damit für gerade oder ungerade. Insbesondere erhält Quadrieren die Parität.

Addition:
+ 0 1
0 0 1
1 1 0
  Multiplikation:
* 0 1
0 0 0
1 0 1

Im Dezimal-, Binär- und allgemein in jedem Stellenwertsystem mit gerader Basis erkennt man die Parität daran, ob die letzte Ziffer durch 2 teilbar ist.

Bemerkungen

Verallgemeinerungen

Das Konzept der Parität wird in vielen Bereichen der Mathematik auch allgemeiner angewandt:

Siehe auch

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 22.02. 2023