Lagrange-Resolvente
Die Lagrange-Resolvente ist in der Theorie algebraischer Gleichungen eine aus den Nullstellen (Wurzeln) eines Polynoms und den primitiven Einheitswurzeln gebildete Hilfsgröße, die eine andere Polynomgleichung, die Resolventengleichung, erfüllt. Neben der Lagrange-Resolvente gibt es auch andere Resolventen.
Hauptteil
Sie wurde von Joseph-Louis Lagrange um 1770 eingeführt, um die Lösbarkeit von algebraischen Gleichungen höheren Grades durch Radikale zu untersuchen, das heißt durch geschlossene Ausdrücke aus den Koeffizienten der Gleichung, die nur die Grundrechenarten und Wurzelziehen verwenden.
Entsprechende Formeln kannte man für Polynome dritten und vierten Grades seit Nicolo Tartaglia und anderen, und die Erweiterung auf Polynome höheren Grades war eines der Hauptziele der algebraischen Forschung bis Anfang des 19. Jahrhunderts, als durch die Arbeiten von Evariste Galois und Niels Henrik Abel klar wurde, dass dies im Allgemeinen für Gleichungen fünften und höheren Grades nicht möglich ist. Lagrange erkannte bei der Analyse des Problems, dass die Untersuchungen von Größen, die bei der Permutation der Wurzeln invariant bleiben, in diesem Zusammenhang wichtig sind, was schließlich später zur Lösung des Problems über die Struktur der beteiligten Permutationsgruppen durch Galois in den 1830er Jahren führte (eine Polynomgleichung ist nach Galois genau dann durch Radikale auflösbar, wenn die Galois-Gruppe des Polynoms eine auflösbare Gruppe ist).
Man betrachtet das Polynom -ten
Grades
mit den Wurzeln
und bekannten Koeffizienten
,
die elementarsymmetrische
Polynome der Wurzeln sind.
Die Lagrange-Resolvente ist der Ausdruck
mit einer primitiven -ten
Einheitswurzel
(sie erfüllt
).
Dabei wird vorausgesetzt, dass keine mehrfachen Wurzeln auftreten (die Wurzeln
sind paarweise verschieden).
Durch Permutation der
erhält man daraus die insgesamt
Größen
.
Die Wurzeln der Ausgangsgleichung
sollten sich durch die
und die Koeffizienten
ausdrücken lassen.
Die Lagrange-Resolventen selbst sind Wurzeln der Resolventengleichung :
Die Resolventengleichung ist ebenso wie die Ausgangsgleichung
invariant unter Vertauschung der Wurzeln von
.
Die Koeffizienten der Resolventengleichung sind als elementarsymmetrische
Funktionen in den
symmetrische Funktionen in den Wurzeln von
und nach dem Hauptsatz für elementarsymmetrische Funktionen Polynome in den
(den elementarsymmetrischen Funktionen der Wurzeln von
).
Lagrange (und unabhängig Vandermonde) zeigten, dass sich die bekannten Lösungsformeln der Gleichungen dritten und vierten Grades (im Fall der Kubischen Gleichung die Cardano-Formel) durch Betrachtung der Resolventengleichung einheitlich erklären lassen. Im Fall der kubischen Gleichung ist sie sechsten Grades, lässt sich aber auf eine quadratische Gleichung reduzieren. Die Gleichung vierten Grades führt zunächst auf eine Resolventengleichung 24. Grades, die sich aber auf eine kubische Gleichung reduzieren lässt. Bei der Gleichung fünften Grades stieß Lagrange auf die Grenzen seiner Methode, die in diesem Fall das Problem nicht vereinfachte. Abel zeigte später, dass sie nicht allgemein durch Radikale lösbar ist.
Allgemein versteht man unter Resolventen Polynome oder allgemeiner rationale
Funktionen in den Wurzeln der Ausgangsgleichung
(gebildet mit anderen bekannten Größen wie den Koeffizienten von
),
aus denen sich die Wurzeln von
eindeutig gewinnen lassen, und unter der Resolventengleichung eine
Hilfsgleichung zur Bestimmung der Resolventen. Die Resolventen sollten nach
Lagrange möglichst wenig Werte bei Permutation der Wurzeln von
einnehmen. Die Resolventengleichung ist nach Konstruktion wie die
Ausgangsgleichung
invariant unter Vertauschung der Wurzeln von
.
Mit diesen allgemeineren Resolventen lassen sich die Galoisgruppe der Gleichung und deren Untergruppen untersuchen (mit zugehörigen Resolventen) und sie waren im 19. Jahrhundert ein fester Bestandteil der Behandlung der Galoistheorie in Lehrbüchern (in diesem Zusammenhang spricht man von Galois-Resolvente). Der Begriff Resolvente stammt ursprünglich von Leonhard Euler (1738) in Zusammenhang mit der Gleichung vierten Grades und der Name kommt aus dem Lateinischen (resolvere für auflösen). Bei diesen klassischen Methoden der Lösung der Gleichung 4. Grades wird man auf eine Hilfsgleichung 3. Grades geführt, die kubische Resolvente der Quartik genannt wird.
Beispiel Quadratische Gleichung
Der Fall wird hier dargestellt, um das Prinzip aufzuzeigen, obwohl es keine Vereinfachung durch das Resolventenverfahren gibt:
mit
und
.
Die Lagrange-Resolventen sind (mit den hier verwendeten quadratischen Einheitswurzeln: +1, −1):
und
Die Resolventengleichung ist ebenfalls quadratisch:
Die Lösung
wird auch Diskriminante
der quadratischen Gleichung
genannt.
Die Wurzeln der Ausgangsgleichung
sind durch die Resolventen und Koeffizienten
gegeben über:
und
Mit
ergibt sich
und dies eingesetzt ergibt die üblichen Lösungformeln der quadratischen
Gleichung.
Beispiel Kubische Gleichung
Man betrachtet die normierte kubische
Gleichung mit Leitkoeffizient
1 und den Wurzeln :
Die Koeffizienten
sind die elementarsymmetrischen Funktionen in den Wurzeln
:
,
,
Gesucht wird nach der Resolventenkonstruktion eine Hilfsgleichung, aus der
sich die Wurzeln
bestimmen lassen.
Die Lagrange-Resolvente ist:
,
wobei
eine primitive dritte Einheitswurzel ist, also eine Lösung von
,
,
das heißt, einer der beiden Werte
oder
.
Durch Vertauschung der Wurzeln
erhält man sechs verschiedene

Aus der Gleichung für ,
und
lassen sich
bestimmen, falls die Resolventen bekannt sind.
Die sechs Werte für
kann man nun als Lösung einer anderen Gleichung 6. Grades auffassen, der
Resolventengleichung:
Dass
eine quadratische Gleichung ist, ergibt sich aus folgendem Rechengang.
Wegen
und
ist
Eingesetzt ergibt sich:
Setzt man
,
schreibt sich die Gleichung
.
Nach Substitution
erhält man die quadratische Gleichung .
Das lässt sich auch so einsehen, dass
unter Vertauschung der Wurzeln
zwar sechs Bilder
hat (
,
,
,
,
,
),
aber nur zwei (wegen
),
sich selbst und
,
weshalb man
als Resolventengleichung nehmen kann.
Dabei lassen sich
und
allein durch die Wurzeln der Ausgangsgleichung
ausdrücken. Das kann man durch direktes Ausrechnen zeigen oder mit folgender
Argumentation:
Die elementarsymmetrischen Funktionen von
(also
und
)
sind bei Vertauschung von
invariant und damit durch deren elementarsymmetrische Funktionen ausdrückbar,
also durch
.
Explizit ergibt sich
und
.
In der Galoistheorie wird die Lösbarkeit durch Radikale dadurch gezeigt, dass
die Symmetriegruppe
der drei Wurzeln auflösbar ist, denn es gibt die Kette
(die Alternierende
Gruppe der geraden
Permutationen), 1 (Identität), wobei
(Ordnung 3) zyklisch ist und ebenso die Quotientengruppe
(Ordnung 2).
vertauscht separat
und
untereinander. Die primitive Wurzel
ist Erzeugende der zyklischen Gruppe
.
Gleichungen 4. Grades
Die Diskussion lässt sich analog zur kubischen Gleichung mit
Lagrange-Resolventen durchführen, aber auch mit anderen Resolventen. Im
Folgenden werden Resolventen verwendet, die nicht mehr linear in den Wurzeln
der Ausgangsgleichung sind, aber die Invarianten von Untergruppen der vollen Symmetriegruppe
der Wurzeln bei der Gleichung vierten Grades sind.
Sei
die reduzierte quartische Gleichung (der Term dritten Grades wurde mit einer
Tschirnhaus-Transformation
beseitigt)
.
Man bilde die Resolventen
.
Dann erfüllten diese die Resolventengleichung (kubische Resolvente):
mit
,
,
.
Außerdem werden die Resolventen durch die Permutationen der Kleinschen
Vierergruppe
in sich übergeführt. Diese ist Bestandteil der Normalteiler-Kette
,
,
,
,
Identität zur Auflösung der symmetrischen Gruppe
(mit
der zyklischen
Gruppe der Ordnung 2 und
der Alternierenden
Gruppe der Ordnung 4). Die Faktorgruppen sind jeweils zyklische Gruppen.
Diese Kette erklärt die Lösbarkeit der Gleichung vierten Grades durch Radikale
in der Galoistheorie.
Dies ist ein Beispiel für Resolventen, die nicht mehr unter der vollen
Symmetriegruppe
der Permutation der Wurzeln invariant sind, sondern nur unter einer Untergruppe.
Gleichungen 5. Grades
Lagrange konnte das Problem nur auf eine Resolvente reduzieren, die 24 verschiedene Werte annahm bei Permutation der Wurzeln
mit den Wurzeln der Quintik
und der primitiven fünften Einheitswurzel
.
Die Resolventengleichung war also vom Grad 24.
1861 fand Arthur Cayley eine Resolvente, die in nur sechs verschiedene Werte transformiert wurde bei Permutation aller Wurzeln:
Diese Resolvente wird auch als Malfatti-Resolvente bezeichnet (nach Gianfrancesco Malfatti, der sie schon 1771 einführte).
Sie nimmt sechs Werte bei Permutation der Wurzeln an, erfüllt also eine
Resolventengleichung sechsten Grades. Eine Quintik mit rationalen Koeffizienten
ist genau dann durch Radikale lösbar, falls eine der Lösungen
rational ist.
Im Allgemeinen ist sie, wie in der Galoistheorie gezeigt wird,[1]
nicht mehr durch Radikale lösbar, was auch für alle Gleichungen höheren Grades
gilt.
Galois-Resolvente
Galois betrachtete zu einer vorgegebenen algebraischen Gleichung
vom Grad
die Symmetrien, die in Bezug auf die Wurzeln
bestehen. Formal lassen sich diese Symmetrien, sofern die
Wurzeln verschieden sind, mittels der Gesamtheit
der Polynome
charakterisieren, die bei Einsetzen der
Wurzeln
der Gleichung
identisch verschwinden:
.
Die Gruppe der Permutationen der
,
welche die Menge
in sich überführt, ist dann die Galoisgruppe von
.
Um sich vereinfachend auf Polynome in nur einer Variablen beschränken zu können, bildete Galois die heute nach ihm benannte Resolvente:
Dabei sind, was immer möglich ist, ganze Zahlen
derart zu wählen, dass alle Werte
,
die sich bei den insgesamt
Permutationen
der Wurzeln
ergeben, paarweise verschieden sind.
Jede Wurzel
der Gleichung
lässt sich dann nämlich als Polynom des Wertes
ausdrücken, was in heutiger Terminologie dem Satz vom
primitiven Element entspricht:
.
In Folge kann die Polynom-Menge
auf Basis einer einzigen Polynomgleichung für den Wert
,
nämlich zu dessen Minimalpolynom,
charakterisiert werden kann.
Dieses Minimalpolynom erhält man auf folgendem Weg, den bereits Galois
beschritt: Mit einer gefundenen Galois-Resolvente wird zunächst das Polynom
vom Grad
berechnet, das sich als Produkt aller Linearfaktoren der Form
ergibt. Dieses Polynom
wird dann in irreduzible
Faktoren zerlegt. Unter den derart gefundenen Faktoren ist der Faktor
der den Linearfaktor
enthält, das gesuchte Minimalpolynom für die Galois-Resolvente
.
Außerdem besteht die Galoisgruppe aus genau denjenigen Permutationen
deren korrespondierende Linearfaktoren
als Produkt das Minimalpolynom
ergeben.
Im Fall einer algebraischen Gleichung
mit lauter ganzzahligen Koeffizienten und einem Leitkoeffizient gleich
1 kann die gerade beschriebene Vorgehensweise zu Bestimmung der Galoisgruppe mit
Hilfe von numerisch
genügend genau berechneten Lösungen entscheidend vereinfacht werden: Zunächst
muss durch Probieren eine geeignete Galois-Resolvente gefunden werden, wobei die
Verschiedenheit der
Werte numerisch geprüft werden kann. Auch die anschließende Berechnung des
Polynoms
kann numerisch geschehen, da man weiß, dass alle Koeffizienten ganz sein müssen.
Und selbst die abschließende Zerlegung in irreduzible
Faktoren kann mit numerischen Berechnungen vorbereitet und damit deutlich
vereinfacht werden, weil auch die Koeffizienten der irreduziblen Faktoren
ganzzahlig sein müssen.
Die Anforderung, dass alle
Werte
verschieden sind, ist sichergestellt, wenn man die Werte
als Variable in einem entsprechenden Polynomring
auffasst. Da das Produkt
der
Linearfaktoren
symmetrisch in den Wurzeln
ist, besitzt es als Polynom in der Variablen
Koeffizienten, die im Polynomring
liegen. Damit kann dieses Produkt-Polynom
im Ring
in irreduzible Faktoren zerlegt werden, wobei die Linearfaktoren, die zusammen
mit dem Linearfaktor
einen irreduziblen Faktor bilden, mit den Elementen der Galoisgruppe
korrespondieren. Allerdings ist dieses Verfahren weniger von praktischem als von
theoretischem Interesse, nämlich im Hinblick auf Restklassen-Analysen.
Literatur
- Jörg Bewersdorff: Algebra für Einsteiger: Von der Gleichungsauflösung zur Galois-Theorie. 2004, 6. Auflage, 2019, Springer-Spektrum, ISBN 978-3-658-26151-1.
Anmerkungen
- ↑
Die alternierende Gruppe der Ordnung 5
ist eine einfache Gruppe, es lässt sich keine Normalteilerkette mit zyklischen Gruppen als Faktorgruppen bis zur Identität bilden.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 21.12. 2022