Stickstoffmonoxid

Sicherheitshinweise
Bitte die Befreiung von der Kennzeichnungspflicht für Arzneimittel, Medizinprodukte, Kosmetika, Lebensmittel und Futtermittel beachten
GHS-Gefahrstoffkennzeichnung[2]
Gefahrensymbol Gefahrensymbol Gefahrensymbol Gefahrensymbol
Gefahr
H- und P-Sätze H:
  • Kann Brand verursachen oder verstärken; Oxidationsmittel.
  • Enthält Gas unter Druck; kann bei Erwärmung explodieren.
  • Lebensgefahr bei Einatmen.
  • Verursacht schwere Verätzungen der Haut und schwere Augenschäden.
EUH: Wirkt ätzend auf die Atemwege.
P:
  • Von Kleidung und anderen brennbaren Materialien fernhalten.
  • Druckminderer frei von Fett und Öl halten.
  • Staub / Rauch / Gas / Nebel / Dampf / Aerosol nicht einatmen.
  • Schutzhandschuhe/ Schutzkleidung/ Augenschutz/ Gesichtsschutz/ Gehörschutz/ … tragen.
  • Bei Berührung mit der Haut [oder dem Haar]: Alle kontaminierten Kleidungsstücke sofort ausziehen. Haut mit Wasser abwaschen [oder duschen]. Sofort ärztlichen Rat einholen / ärztliche Hilfe hinzuziehen. (Keine offizielle P-Satz-Kombination)
  • Bei Einatmen: Die Person an die frische Luft bringen und für ungehinderte Atmung sorgen. Sofort ärztlichen Rat einholen / ärztliche Hilfe hinzuziehen. (Keine offizielle P-Satz-Kombination)">304+340+315
  • Bei Kontakt mit den Augen: Einige Minuten lang behutsam mit Wasser spülen. Eventuell vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter spülen. Sofort ärztlichen Rat einholen / ärztliche Hilfe hinzuziehen. (Keine offizielle P-Satz-Kombination)
  • Bei Brand: Undichtigkeit beseitigen, wenn gefahrlos möglich.
  • An einem gut belüfteten Ort aufbewahren.
  • Unter Verschluss aufbewahren.
[2]
MAK
  • DFG: 0,5 mlIm3 bzw. 0,63 mg/m3[2]
  • Schweiz: 5 ml/m3 bzw. 6 mg/m3[6]
Toxikologische Daten

Stickstoffmonoxid ist ein farb- und geruchloses, an Luft instabiles Gas mit der Formel N=O. Es ist eine chemische Verbindung aus den Elementen Stickstoff und Sauerstoff und gehört zur Gruppe der Stickoxide. NO ist ein Radikal.

Strukturformel
Allgemeines
Name Stickstoffmonoxid
Andere Namen
  • Stickstoffoxid
  • Stickoxid
Summenformel NO
Kurzbeschreibung farb- und geruchloses Gas[1][2]
Externe Identifikatoren/Datenbanken
CAS-Nummer Extern 10102-43-9
EG-Nummer 233-271-0
ECHA-InfoCard Extern 100.030.233
PubChem Extern 145068
DrugBank Extern DB00435
Arzneistoffangaben
ATC-Code Extern AX01
Eigenschaften
Molare Masse 30,01 g/mol−1
Aggregatzustand gasförmig
Dichte 1,25 kg/m3 (15 °C, 1 bar)[3]
Schmelzpunkt −164 °C[3]
Siedepunkt −152 °C[3]
Löslichkeit 60 mg/l in Wasser (20 °C)[3]
Dipolmoment 0,15872 D[4] (5,29 · 10−31 C · m)
Brechungsindex

1,000297 (0 °C, 101,325 kPa)[5]

Thermodynamische Eigenschaften
ΔHf0 91,3 kJ/mol[10]

Eigenschaften

Das Stickstoffmonoxid hat eine molare Masse von 30,01 g/mol, der Schmelzpunkt liegt bei −163,6 °C, der Siedepunkt bei −151,8 °C. Die kritische Temperatur für NO beträgt −93 °C und der kritische Druck liegt bei 6,4 MPa. In Wasser ist Stickstoffoxid wenig löslich. Die Bindungslänge der N=O Bindung beträgt 117 pm. Unter Einwirkung von Sauerstoff und anderen Oxidationsmitteln wird NO sehr schnell zu braunem Stickstoffdioxid oxidiert, das in Wasser zu Salpetersäure und Salpetriger Säure disproportioniert. Außer mit Iod reagiert es mit Halogenen zu Nitrosylhalogeniden, wie z. B. Nitrosylchlorid. Unter Einwirkung von Schwefeldioxid wird Stickstoffoxid zu Distickstoffoxid reduziert.

Durch die schnelle Umwandlung in Stickstoffdioxid an der Luft wirkt Stickstoffmonoxid schleimhautreizend, und durch die Bildung von Methämoglobin wirkt Stickstoffmonoxid toxisch. Die Ausbildung der Methämoglobinämie beruht auf einer Reaktion von HbO2 mit NO selbst, wobei Nitrat und Methämoglobin entstehen, sowie auf der Reaktion mit aus NO entstandenem Nitrit.[11]

{\displaystyle \mathrm {Hb(Fe^{3+}){-}O{-}O^{-}+NO_{2}^{-}+H_{2}O\longrightarrow } }{\displaystyle \mathrm {Hb(Fe^{3+})OH+NO_{3}^{-}+OH^{-}} } [12]

Herstellung

[Bearbeiten | Quelltext bearbeiten]

Labortechnisch kann NO durch Reduktion von etwa 65-prozentiger Salpetersäure mit Kupfer gewonnen werden. Das Produkt ist aber relativ unrein. Reines Stickstoffmonoxid ist zugänglich[13]

Industriell wird das Gas durch die katalytische Ammoniakverbrennung (Ostwald-Verfahren) gewonnen. Früher wurde das Gas großtechnisch auch durch sogenannte Luftverbrennung von Stickstoff und Sauerstoff in einem elektrischen Lichtbogen gewonnen. Die verwendeten Verfahren (Birkeland-Eyde-Verfahren, Schönherr-Verfahren, Pauling-Verfahren) zielten auf einen möglichst kurzen Kontakt der Gase mit dem sehr heißen Flammbogen ab, um so das Reaktionsgleichgewicht zum Stickstoffmonoxid zu verschieben. Da hierbei sehr viel elektrische Energie benötigt wird, sind die Verfahren nicht konkurrenzfähig zum Ostwaldverfahren und werden nicht mehr eingesetzt.

Verwendung

Technisch

Stickstoffoxid tritt als Zwischenprodukt bei der technischen Herstellung von Salpetersäure auf und wird zusammen mit Stickstoffdioxid zur Herstellung von Nitriten verwendet. Reinstes Stickstoffmonoxid wird als Prüfgas zur Kalibrierung von Messgeräten eingesetzt.

Medizinisch

Stickstoffmonoxid hat eine erweiternde Wirkung auf die Blutgefäße und wird in der Lunge sowie unter anderem bei Sepsis durch ein körpereigenes Enzym, die endotheliale Stickstoffmonoxid-Synthase (eNOS), aus der Aminosäure L-Arginin synthetisiert.

Originalarbeiten und Meta-Analysen sowie systematische Übersichtsarbeiten belegen die protektiven Wirkungen von NO und seiner Vorstufe L-Arginin bei Gesunden ebenso wie bei Patienten mit kardiovaskulären Erkrankungen wie Arteriosklerose Bluthochdruck und Durchblutungsstörungen und empfehlen eine Sicherstellung der NO-Bildung durch eine gezielte Zufuhr ausreichender Mengen an L-Arginin.[14][15][16][17][18][19][20]

Das Gasgemisch INOmax des Herstellers Linde AG wurde 1999 durch die Food and Drug Administration (FDA) in den USA[21] und 2001 durch die Europäische Kommission in der EU[22] für die Behandlung von Neugeborenen bei Lungenversagen mit hohem Blutdruck in der Lunge zugelassen (hypoxisch respiratorische Insuffizienz, Lungenhochdruck“). Es ist weltweit das erste medizinische Gas, das als Arzneimittel zugelassen wurde, und enthält 100, 400 oder 800 ppm (0,01 %, 0,04 % oder 0,08 %) Stickstoffmonoxid als wirksamen Bestandteil, der Rest ist inerter Stickstoff. INOmax wird als komprimiertes Gas in Aluminium-Gasflaschen vertrieben. Zur Anwendung wird es der Atemluft zugesetzt, die empfohlene Dosis liegt bei 20 ppm.[22][23]

Stickstoffmonoxid wirkt sehr schnell, wodurch lebensbedrohliche Komplikationen gut behandelt werden können. In der Herzchirurgie (Klappenerkrankungen, Herztransplantationen) kann NO verwendet werden, um einen erhöhten pulmonalen Druck zu behandeln. Für die Behandlung des ARDS, einer schweren Lungenfunktionsstörung, die nach Lungenverletzungen, -entzündungen und Reizgasverätzungen auftreten kann, ist ein therapeutischer Effekt von NO nicht belegt.[24][25]

Physiologische Bedeutung

Stickstoffmonoxid ist ein bioaktives Molekül, das mit anderen Molekülen sowohl Redoxreaktionen als auch additive Reaktionen eingehen kann. Aufgrund seiner geringen Größe kann es in kurzer Zeit biologische Membranen durchqueren und lokal verschiedene Funktionen ausüben, von denen ein Teil auch destruktiv für den jeweiligen Organismus ist. Diese reichen von der Signaltransduktion im Gefäß- und Nervensystem über die Verwendung als protektiver Radikalfänger bis zur Rolle als reaktive Stickstoffspezies bei der unspezifischen Immunabwehr. Auch in Pflanzen werden mehrere Prozesse über NO-Signale gesteuert; lediglich bei Archaeen ist fraglich, ob Stickstoffmonoxid eine biologische Funktion hat. Auf der destruktiven Seite ist die Schädigung von Proteinen und DNA zu nennen, die mit chronischem Entzündungsgeschehen in Säugetieren und daraus folgender lokaler NO-Produktion einhergeht.[26] Weitere Gasotransmitter sind das Kohlenstoffmonoxid und der Schwefelwasserstoff.[27][28]

Das asymmetrische Dimethylarginin (ADMA) ist ein endogener Inhibitor der NO-Synthese aus L-Arginin und führt zu einer Entkopplung der eNOS-Aktivität unter Bildung von Superoxidanionradikalen, die dann mit NO zu Peroxinitrit reagieren.[29][30][31] Das Verhältnis von L-Arginin und ADMA beeinflusst die Bildung von Stickstoffmonoxid.[29] Die NO-Bildung sollte klar überwiegen.[30] Die Entkopplung von eNOS durch verstärkt gebildetes ADMA (verringerter L-Arginin/ADMA-Quotient) führt zu nitrosativem Stress,[31] und ist ein Indikator für eine Herz-Kreislauf-Erkrankung. Die Synthese von NO sollte daher durch eine ausreichende Zufuhr von L-Arginin sichergestellt sein.[14][15][16][17][18][19][20][29][30][31] Stickstoffmonoxid reagiert im Blut innerhalb von Sekunden mit Oxyhämoglobin zu NO3; Stickstoffdioxid ist dabei kein Zwischenprodukt.[32]

Geschichte

Ende der 1970er Jahre wurde der Pharmakologe Ferid Murad erstmals auf die physiologischen Wirkungen des Stickstoffmonoxid (NO) aufmerksam. Bei Untersuchungen mit organischen Nitraten – einer Substanzgruppe, die bei akuten Brustschmerzen eingesetzt wird – entdeckte er, dass diese NO freisetzen, welches eine Erweiterung der Blutgefäße (Vasodilatation) bewirkt. Auch der Pharmakologe Robert F. Furchgott untersuchte die Auswirkungen von Medikamenten auf die Blutgefäße. Er fand heraus, dass die innerste Gefäßschicht (Endothel) eine unbekannte Substanz (Faktor) produziert, die in der darüberliegenden Muskelschicht deren Erschlaffung (Relaxierung) herbeiführt. Da er die Substanz nicht bestimmen konnte, nannte er sie EDRF (Endothelium-derived relaxing Factor, von dem Endothel stammender, gefäßmuskulatur-erschlaffender Faktor). Erst im Laufe der 1980er Jahre gelang es, die unbekannte Substanz EDRF zu entschlüsseln. Unabhängig voneinander identifizierten Louis J. Ignarro und Robert F. Furchgott EDRF als Stickstoffmonoxid.

1998 wurde der Nobelpreis für Physiologie und Medizin an die Amerikaner Robert Furchgott, Ferid Murad und Louis J. Ignarro verliehen. Den Forschern gelang es erstmals, die große Bedeutung des NO für die Blutversorgung von Organen und dessen Rolle als Botenstoff im Organismus nachzuweisen. Mit den Erkenntnissen über NO erschließen sich somit neue Möglichkeiten bei der Behandlung von Gefäßerkrankungen und den dadurch bedingten Organschäden.

Biosynthese

NO wird unter Verbrauch von NADPH, Tetrahydrobiopterin (BH4), Flavin-Adenin-Dinukleotid (FAD), Flavinmononukleotid (FMN), Häm und dem Calcium-bindenden Protein (Calmodulin, CaM) durch NO-Synthasen (NOS) aus der Aminosäure L-Arginin und Sauerstoff hergestellt. Als Nebenprodukte entstehen dabei Citrullin und Wasser. Von den bisher identifizierten NOS-Isoformen sind die endotheliale NOS(eNOS) und die neuronale NOS (nNOS) konstitutiv exprimierte Enzyme. Daneben existiert eine transkriptionell induzierbare Isoform (iNOS). Alle Isoformen besitzen hohe Sequenz-Homologie mit der Cytochrom P450-Reduktase.

Hauptartikel: NO-Synthasen

Physiologische Anpassung

In Anpassung an das Leben im Hochland auf 4000 Metern verfügen Tibeter über zehnmal so viel NO im Blut wie Tieflandbewohner. Die dadurch bewirkte Verdoppelung ihres Blutflusses ermöglicht ihnen eine angemessene Sauerstoffversorgung.[33]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Sicherheitsdatenblatt Extern Stickstoffmonoxid (PDF; 192 kB) AirLiquide.
  2. Hochspringen nach: a b c d Eintrag zu Extern Stickstoffmonoxid in der GESTIS-Stoffdatenbank des Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung.
  3. Hochspringen nach: a b c d Sicherheitsdatenblatt Extern Stickstoffmonoxid (Suche nach Stickstoffmonoxid) Linde AG.
  4. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Dipole Moments, S. 9-51.
  5. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Index of Refraction of Gases, S. 10-254.
  6. Schweizerische Unfallversicherungsanstalt (Suva): Extern Grenzwerte – Aktuelle MAK- und BAT-Werte (Suche nach 10024-97-2 bzw. Stickstoffmonoxid).
  7. British Journal of Anesthesia. Vol. 39, 1967, S. 393.
  8. Naunyn-Schmiedeberg’s Archiv für Experimentelle Pathologie und Pharmakologie. Vol. 181, 1936, S. 145.
  9. Gigiena Truda i Professional'nye Zabolevaniya. Labor Hygiene and Occupational Diseases. Vol. 19(4), 1975, S. 52.
  10. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Standard Thermodynamic Properties of Chemical Substances, S. 5-16.
  11. Patrick Horn: Aktivität und Bedeutung der erythrozytären NOS bei kardiovaskulären Risikofaktoren. (Dissertation RWTH Aachen, 10. Juni 2008)
  12. Martin Ledig, Georg Wittke: Nitrat in Lebensmitteln. In: Naturwissenschaften im Unterricht. Chemie., 5 (42) 23, 1994, S. 7–12.
  13. G. Brauer (Hrsg.): Handbook of Preparative Inorganic Chemistry. 2. Auflage. vol. 1, Academic Press 1963, S. 485–487.
  14. Hochspringen nach: a b J. Y. Dong, L. Q. Qin, Z. Zhang, Y. Zhao, J. Wang, F. Arigoni, W. Zhang: Effect of oral L-arginine supplementation on blood pressure: A meta-analysis of randomized, double-blind, placebo-controlled trials. In: Am Heart. Band 162, 2011, S. 959–965.
  15. Hochspringen nach: a b F. Pizzarelli, R. Maas, P. Dattolo, G. Tripepi, S. Michelassi, G. D’Arrigo, M. Mieth, S. Bandinelli, L. Ferrucci, C. Zoccali: Asymmetric dimethylarginine predicts survival in the elderly. In: Age. Band 35, Nr. 6, 2013, S. 2465–2475.
  16. Hochspringen nach: a b S. M. Bode-Böger, J. Muke, A. Surdacki, G. Brabant, R. H. Böger, J. C. Frölich: Oral L-arginine improves endothelial function in healthy individuals older than 70 years. In: Vasc. Med. Band 8, 2003, S. 77–81.
  17. Hochspringen nach: a b K. Jung, O. Petrowicz: L-Arginin und Folsäure bei Arteriosklerose. Ergebnisse einer prospektiven, multizentrischen Verzehrsstudie. In: Perfusion. Band 21, 2008, S. 148–156.
  18. Hochspringen nach: a b P. Lucotti, L. Monti, E. Setola, G. La Canna, A. Castiglioni, A. Rossodivita, M. G. Pala, F. Formica, G. Paolini, A. L. Catapano, E. Bosi, O. Alfieri, P. Piatti: Oral L-arginine supplementation improves endothelial function and ameliorates insulin sensitivity and inflammation in cardiopathic nondiabetic patients after an aortocoronary bypass. In: Metabolism. Band 58, Nr. 9, 2009, S. 1270–1276.
  19. Hochspringen nach: a b Y. Bai, L. Sun, T. Yang, K. Sun, R. Chen J. Hui: Increase in fasting vascular endothelial function after short-term oral L-arginine is effective when baseline flow-mediated dilation is low: a meta-analysis of randomized controlled trials. In: Am. J. Clin. Nutr. Band 89, Nr. 1, 2009, S. 77–84.
  20. Hochspringen nach: a b J. W. Drover, R. Dhaliwal, L. Weitzel, P. E. Wischmeyer, J. B. Ochoa, D. K. Heyland: Perioperative use of arginine-supplemented diets: a systematic review of the evidence. In: J. Am. Coll. Surg. Band 212, Nr. 3, 2011, S. 385–399.
  21. Extern FDA Approval Letter. (PDF; 100 kB) Food and Drug Administration (englisch)
  22. Hochspringen nach: a b Extern Zusammenfassung des europäischen Öffentlichen Beurteilungsberichts (EPAR) für INOmax.
  23. Extern Fachinformation für USA. ( PDF; 618 kB) inomax.com (englisch).
  24. N. K. Adhikari u.a.: Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. In: British Medical Journal, 334(7597), 14. April 2007, S. 779. Extern PMID 17383982
  25. H. R. Bream-Rouwenhorst u.a.: Recent developments in the management of acute respiratory distress syndrome in adults. In: American Journal of Health-System Pharmacy, 65(1), 1. Januar 2008, S. 29–36. Extern PMID 18159036.
  26. M. V. Beligni, L. Lamattina: Nitric oxide in plants: the history is just beginning. In: Plant, Cell and Environment. 24, 2001, S. 267–278, Extern doi:10.1046/j.1365-3040.2001.00672.x.
  27. Anton Hermann, Guzel F. Sitdikova, Thomas M. Weiger: Gasotransmitter: flüchtige Überträgerstoffe. Stickoxid, Kohlenmonoxid und Schwefelwasserstoff fungieren als Botenstoffe und sind physiologisch wirksam. In: Ärzte Woche. Springer, New York 21. Oktober 2010
  28. Anton Hermann, Guzel F. Sitdikova, Thomas M. Weiger: Gase als zelluläre Signalstoffe. Gasotransmitter. In: Biologie in unserer Zeit, 40, 2010, S. 185–193; Extern doi:10.1002/biuz.201010422.
  29. Hochspringen nach: a b c B. Poeggeler: Oxidative Stress und L-Arginin schützt vor nitrosativem Stress. Stickstoffmonoxid als endogener Regulator des nitrosativen Stoffwechsels. In: Perfusion, Band 25 (2), 2012, S. 40–43.
  30. Hochspringen nach: a b c E. Schulz, T. Gori, T. Münzel: Oxidative stress and endothelial dysfunction in hypertension. In: Hypertens Res. Band 34 (6), 2011, S. 665–673, doi:10.1038/hr.2011.39. PMID 21512515.
  31. Hochspringen nach: a b c I. Seljeflot, B. B. Nilsson, A. S. Westhelm, V. Bratseth, H. Arnesen: The L-arginine-asymmetric dimethylarginine ratio is strongly related to the severity of chronic heart failure. No effects of exercise training. In: J Card Fail., Band 17 (2), 2011, S. 135–142; doi:10.1016/j.cardfail.2010.09.003. PMID 21300303
  32. Joseph S. Beckman, Willem H. Koppenol: Nitric oxide, superoxide and peroxynitrite: the good, the bad, and the ugly. In: AM. J. Physiol., 271/5, S. C1424; doi:10.1152/ajpcell.1996.271.5.C1424
  33. S. C. Erzurum u.a.: Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. In: PNAS, 104, November 2007, S. 17593–17598; doi:10.1073/pnas.0707462104
Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 17.12. 2024