Vollständig regulärer Raum

Im mathematischen Teilgebiet der Topologie versteht man unter einem vollständig regulären Raum einen topologischen Raum mit speziellen Trennungseigenschaften. Dabei handelt es sich um topologische Räume, die im unten präzisierten Sinne hinreichend viele stetige Funktionen besitzen, um zu einer reichhaltigen Theorie zu führen. Die Bedeutung dieses Begriffs wird durch eine Vielzahl äquivalenter Charakterisierungen deutlich.

Definition

Die Funktion f trennt den Punkt x von der Menge A.

Ein vollständig regulärer Raum ist ein topologischer Hausdorff-Raum X, in dem es zu jeder abgeschlossenen Menge A\subset X und jedem Punkt x\in X\setminus A eine stetige Funktion {\displaystyle f\colon X\rightarrow {\mathbb {R} }} gibt mit f(x)=1 und f(a)=0 für alle a\in A.

Im Sinne dieser Definition besitzt ein vollständig regulärer Raum hinreichend viele stetige Funktionen, um abgeschlossene Mengen von außerhalb liegenden Punkten zu trennen. Zudem ist es keine Einschränkung vorauszusetzen, dass es sich hierbei um beschränkte Funktionen handelt. Ist nämlich f eine stetige Funktion, die x und A trennt, so ist es auch g\circ f mit {\displaystyle g\colon \mathbb {R} \to \mathbb {R} }, definiert durch {\displaystyle g(z)=z} für {\displaystyle z\in [0,1]} sowie {\displaystyle g(z)=1} für z>1 und {\displaystyle g(z)=0} für {\displaystyle z<0}.

Vollständig reguläre Räume werden nach dem russischen Mathematiker Andrei Nikolajewitsch Tichonow auch Tichonow-Räume genannt oder auch T-Räume bzw. T3a-Räume, da die definierende Eigenschaft zwischen den Trennungsaxiomen T3 und T4 liegt. Es gibt Autoren, die in der Definition der vollständigen Regularität nicht die Hausdorff-Eigenschaft fordern und unter einem Tichonow-Raum einen hausdorffschen vollständig regulären Raum verstehen.

Beispiele

Permanenz-Eigenschaften

Charakterisierungen

Zu einem topologischen Raum betrachte man die Menge C(X) aller stetigen Funktionen X\rightarrow {{\mathbb  R}}. Definitionsgemäß ist für jeden topologischen Raum X die Initialtopologie bzgl. C(X) gröber als die Ausgangstopologie auf X. Es gilt:

Mittels der Stone-Čech-Kompaktifizierung zeigt man leicht:

Uniforme Räume induzieren eine Topologie auf der unterliegenden Menge, siehe Artikel uniformer Raum. Es gilt:

Die uniforme Struktur ist nicht eindeutig durch den vollständig regulären Raum festgelegt. Uniforme Räume sind vollständig reguläre Räume mit einer Zusatzstruktur, nämlich der uniformen Struktur. Die im Artikel uniformer Raum definierten Begriffe Vollständigkeit, gleichmäßige Stetigkeit und gleichmäßige Konvergenz hängen von der uniformen Struktur ab, sie lassen sich nicht rein topologisch im Kontext vollständig regulärer Räume behandeln.

Eine Topologie auf einer Menge X wird durch eine Familie \mathcal D von Pseudometriken erzeugt, wenn die offenen Mengen genau diejenigen Mengen U\subset X sind, für die es zu jedem x\in U endlich viele Pseudometriken d_{1},\ldots ,d_{n}\in {{\mathcal  D}} und ein \epsilon >0 gibt mit \{y\in X;d_{j}(x,y)<\varepsilon ,j=1,\ldots ,n\}\subset U. Es gilt:

Eigenschaften

Vollständig reguläre Räume sind regulär. Daher hat jeder Punkt eine Umgebungsbasis aus abgeschlossenen Mengen.

Ist X ein topologischer Hausdorff-Raum mit abzählbarer Basis, so sind äquivalent:

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 11.10. 2018