Hyperbolische Gruppe
Hyperbolische Gruppen (auch: wort-hyperbolische Gruppen, Gromov-hyperbolische Gruppen, negativ gekrümmte Gruppen) sind eines der zentralen Themen der geometrischen Gruppentheorie.
Der Begriff wurde in den 1980er Jahren von Michail Leonidowitsch Gromow eingeführt, die Verwendung geometrischer Methoden in der Gruppentheorie hat aber eine lange bis zu Max Dehns Verwendung hyperbolischer Geometrie zur Lösung des Wortproblems für Fundamentalgruppen kompakter Flächen zurückreichende Tradition. In gewissem Sinne sind fast alle Gruppen hyperbolisch. Zahlreiche Methoden aus der Geometrie negativ gekrümmter Räume lassen sich auf hyperbolische Gruppen übertragen und so für die Gruppentheorie nutzbar machen.
Definition
Eine endlich erzeugte Gruppe
ist hyperbolisch, wenn der einem endlichen Erzeugendensystem zugeordnete
Cayley-Graph
-hyperbolisch
für ein
ist. Diese Definition ist unabhängig von der Wahl des endlichen
Erzeugendensystems.
Ausführlicher:

Der zu einem endlichen Erzeugendensystem S einer Gruppe G zugeordnete
Cayley-Graph ist der wie folgt definierte Graph :
Die Knotenmenge
ist die Gruppe
,
die Kantenmenge
besteht aus Paaren der Form
,
wobei
ein beliebiges Gruppenelement und
ein Element aus
ist. Das Bild rechts zeigt den Cayley-Graphen der von zwei Elementen
erzeugten freien
Gruppe.
Durch die Festlegung, dass alle Kanten Länge
haben, wird der Cayley-Graph zu einem metrischen Raum. (Die induzierte Metrik
auf der Knotenmenge
heißt die Wort-Metrik
der Gruppe
.)
Für verschiedene endliche Erzeugendensysteme erhält man quasi-isometrische Cayleygraphen. Alle bis auf Quasi-Isometrie bestimmten geometrischen Eigenschaften von Graphen entsprechen also Eigenschaften von Gruppen.


Ein metrischer Raum heißt -hyperbolisch
für ein
wenn alle geodätischen Dreiecke δ-dünn sind, d.h. jede Kante des
Dreiecks in der
-Umgebung
der Vereinigung der beiden anderen Kanten enthalten ist:
Diese Bedingung ist zum Beispiel für geodätische Dreiecke in Bäumen mit
oder in der hyperbolischen Ebene mit
erfüllt, allgemeiner für geodätische Dreiecke in einfach
zusammenhängenden Riemannschen Mannigfaltigkeiten negativer Schnittkrümmung.
Im Euklidischen Raum ist die Eigenschaft dagegen nicht erfüllt: für jedes
kann man in einem Dreieck durch einfache Skalierung mit einem konstanten
positiven, von
abhängigen Faktor zu einem Dreieck gelangen, bei dem die
-Umgebung
von zwei Kanten nicht die
-Umgebung
der dritten Kante im Dreieck umfasst.
Wenn zwei metrische
Räume
und
quasi-isometrisch sind, dann ist
-hyperbolisch
für ein
genau dann, wenn
-hyperbolisch
für ein (eventuell verschiedenes)
ist. Insbesondere ist der einem endlichen Erzeugendensystem zugeordnete
Cayley-Graph einer Gruppe
-hyperbolisch
für ein
genau dann, wenn dies für jedes endliche Erzeugendensystem zutrifft.
Damit kann man dann unabhängig vom gewählten endlichen Erzeugendensystem
einer Gruppe
definieren: die Gruppe
ist hyperbolisch, wenn der Cayley-Graph
-hyperbolisch
für ein
ist.
Beispiele
- Endliche Gruppen und virtuell zyklische Gruppen sind hyperbolisch, diese Gruppen werden oft als elementare hyperbolische Gruppen bezeichnet.
- Endlich erzeugte freie Gruppen sind hyperbolisch.
- Fundamentalgruppen kompakter Riemannscher Mannigfaltigkeiten negativer Schnittkrümmung sind hyperbolisch. Das umfasst insbesondere Fundamentalgruppen kompakter hyperbolischer Mannigfaltigkeiten, zum Beispiel Fundamentalgruppen von kompakten Flächen negativer Euler-Charakteristik.
- Eine „zufällig gewählte“ Gruppe ist hyperbolisch. Das heißt genauer: Für
eine (beliebig, aber fest gewählte) natürliche Zahl
und ein
mit
betrachte man zu jeder natürlichen Zahl
alle Gruppen mit
Erzeugern und (höchstens)
Relationen der Länge (höchstens)
. Sei
der Anteil der hyperbolischen Gruppen in dieser Menge von Gruppen. Gromov hat bewiesen, dass für
gegen unendlich der Anteil
gegen 100 % geht.
- Eine Gruppe, die
als Untergruppe enthält, ist nicht hyperbolisch.
Anwendungen
Verschiedene für beliebige Gruppen formulierbare (und im Allgemeinen offene) Vermutungen wurden für die Klasse der hyperbolischen Gruppen unter Benutzung deren spezieller Geometrie bewiesen. Dazu gehören:
- die Novikov-Vermutung
- die Baum-Connes-Vermutung
- die Farrell-Jones-Vermutung
Rand im Unendlichen
-hyperbolische
Räume
haben einen meist als Gromov-Rand bezeichneten Rand im Unendlichen
.
Dieser ist definiert als die Menge der Äquivalenzklassen geodätischer Strahlen,
wobei zwei Strahlen genau dann äquivalent sind, wenn sie endlichen Abstand
haben.
Nach Wahl eines festen Basispunktes
definiert man die Topologie von
wie folgt: Als Umgebungsbasis
eines Punktes
verwendet man alle
mit
,
wobei
die Menge aller
ist, so dass
und
durch von
ausgehende geodätische Strahlen
repräsentiert werden, für die
ist. Hier bezeichnet
das Gromov-Produkt
.
Die Topologie auf
ist unabhängig vom gewählten
.
Quasi-isometrische Räume haben homöomorphe Ränder im Unendlichen.
Insbesondere ist der Rand einer hyperbolischen Gruppe wohldefiniert
(unabhängig vom Erzeugendensystem )
als Rand im Unendlichen des Cayley-Graphen. Beispiele: für freie Gruppen ist der
Rand im Unendlichen eine Cantormenge,
für Fundamentalgruppen kompakter
-dimensionaler
Riemannscher Mannigfaltigkeiten mit negativer Schnittkrümmung
ist der Rand im Unendlichen eine
-dimensionale
Sphäre,
für die „meisten“ hyperbolischen Gruppen ist der Rand im Unendlichen ein Menger-Schwamm.
Quasi-Isometrien, insbesondere Isometrien, eines -hyperbolischen
Raumes
wirken als Homöomorphismen
auf
.
Insbesondere wirkt jede hyperbolische Gruppe
durch Isometrien auf ihrem Cayley-Graphen und damit durch Homöomorphismen auf
dessen Rand im Unendlichen. Die Wirkung der hyperbolischen Gruppe auf dem Rand
im Unendlichen ist ein „chaotisches“ dynamisches
System.
Eine hyperbolische Gruppe wirkt als Konvergenzgruppe auf ihrem Rand im Unendlichen und dies erlaubt eine topologische Charakterisierung hyperbolischer Gruppen: Eine Gruppe ist genau dann hyperbolisch, wenn sie als gleichmäßige Konvergenzgruppe auf einem perfekten, kompakten, metrisierbaren Raum wirkt.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 01.02. 2021