Stickstoffmonoxid

Sicherheitshinweise
Bitte die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln beachten
GHS-Gefahrstoffkennzeichnung
03 – Brandfördernd 04 – Gasflasche 05 – Ätzend 06 – Giftig oder sehr giftig

Gefahr

H- und P-Sätze H:
  • Lebensgefahr bei Einatmen.
  • Kann Brand verursachen oder verstärken; Oxidationsmittel.
  • Verursacht schwere Verätzungen der Haut und schwere Augenschäden.
  • Enthält Gas unter Druck; kann bei Erwärmung explodieren.
EUH: Wirkt ätzend auf die Atemwege.
P:
  • Staub / Rauch / Gas / Nebel / Dampf / Aerosol nicht einatmen.
  • Schutzhandschuhe / Schutzkleidung / Augenschutz / Gesichtsschutz tragen.
  • Druckminderer frei von Fett und Öl halten.
  • Von Kleidung /…/ brennbaren Materialien fernhalten/entfernt aufbewahren. (Die vom Gesetzgeber offen gelassene Einfügung ist vom Inverkehrbringer zu ergänzen)
  • Bei Einatmen: Die Person an die frische Luft bringen und für ungehinderte Atmung sorgen.
  • Bei Kontakt mit der Haut (oder dem Haar): Alle beschmutzten, getränkten Kleidungsstücke sofort ausziehen. Haut mit Wasser abwaschen/duschen.
  • Bei Kontakt mit den Augen: Einige Minuten lang behutsam mit Wasser spülen. Vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter spülen.
  • Bei Brand: Undichtigkeit beseitigen, wenn gefahrlos möglich.
  • Sofort ärztlichen Rat einholen / ärztliche Hilfe hinzuziehen.
  • Unter Verschluss aufbewahren.
  • An einem gut belüfteten Ort aufbewahren.
EU-Gefahrstoffkennzeichnung
Brandfördernd Sehr giftig Ätzend
Brand-
fördernd
Sehr giftig Ätzend
(O) (T+) (C)
R- und S-Sätze R:
  • Feuergefahr bei Berührung mit brennbaren Stoffen.
  • Sehr giftig beim Einatmen.
  • Verursacht Verätzungen.
S: siehe oben
MAK 30 mg/m3
Toxikologische Daten
  • 5000 ppm/25 min (LCLo, Hund, inh.)
  • 320 ppm (LCLo, Maus, inh.)
  • 1068 mg·m−3·4 h−1 (LC50, Ratte, inh.)

Stickstoffmonoxid ist ein farbloses und giftiges Gas mit der Formel NO. Es ist eine chemische Verbindung aus den Elementen Stickstoff und Sauerstoff und gehört zur Gruppe der Stickoxide. NO ist ein Radikal.

Eigenschaften

Das Stickstoffmonoxid hat eine molare Masse von 30,01 g/mol, der Schmelzpunkt liegt bei −163,6 °C, der Siedepunkt bei −151,8 °C. Die kritische Temperatur für NO beträgt −93 °C und der kritische Druck liegt bei 6,4 MPa. In Wasser ist Stickstoffoxid wenig löslich. Unter Einwirkung von Sauerstoff und anderen Oxidationsmitteln wird NO sehr schnell zu braunem Stickstoffdioxid oxidiert, das in Wasser zu Salpetersäure und Salpetriger Säure disproportioniert. Außer mit Iod reagiert es mit Halogenen zu Nitrosylhalogeniden, wie z.B. Nitrosylchlorid. Unter Einwirkung von Schwefeldioxid wird Stickstoffoxid zu Distickstoffoxid reduziert.

Durch die schnelle Umwandlung in Stickstoffdioxid an der Luft wirkt Stickstoffmonoxid schleimhautreizend, und durch die Bildung von Methämoglobin wirkt Stickstoffmonoxid toxisch. Die Ausbildung der Methämoglobinämie beruht auf einer Reaktion von HbO2 mit NO selbst, wobei Nitrat und Methämoglobin entstehen, sowie auf der Reaktion mit aus NO entstandenem Nitrit.

\mathrm{Hb(Fe^{3+}){-}O{-}O^- + NO_2^- + H_2O \longrightarrow }\mathrm{Hb(Fe^{3+})OH + NO_3^- + OH^-}

Herstellung

Labortechnisch kann NO durch Reduktion von etwa 65-prozentiger Salpetersäure mit Kupfer gewonnen werden. Das Produkt ist aber relativ unrein. Reines Stickstoffmonoxid ist zugänglich

\mathrm{2\ KNO_2 + 2\ KI + 2\ H_2SO_4 \longrightarrow }\mathrm{2\ NO + I_2 + 2\ K_2SO_4 + 2\ H_2O}
Statt Kaliumiodid kann auch Kaliumhexacyanoferrat(II) verwendet werden:
\mathrm{KNO_2 + K_4[Fe(CN)_6] + H_2SO_4 \longrightarrow }\mathrm{NO + K_3[Fe(CN)_6] + K_2SO_4 + H_2O}
\mathrm{6\ NaNO_2 + 3\ H_2SO_4 \longrightarrow }\mathrm{4\ NO + 2\ H_2O + 3\ Na_2SO_4 + 2\ HNO_3}

Industriell wird das Gas durch die katalytische Ammoniakverbrennung (Ostwald-Verfahren) gewonnen. Früher wurde das Gas großtechnisch auch durch sogenannte Luftverbrennung von Stickstoff und Sauerstoff in einem elektrischen Lichtbogen gewonnen. Die verwendeten Verfahren (Birkeland-Eyde-Verfahren, Schönherr-Verfahren, Pauling-Verfahren) zielten auf einen möglichst kurzen Kontakt der Gase mit dem sehr heißen Flammbogen ab, um so das Reaktionsgleichgewicht zum Stickstoffmonoxid zu verschieben. Da hierbei sehr viel elektrische Energie benötigt wird, sind die Verfahren nicht konkurrenzfähig zum Ostwaldverfahren und werden nicht mehr eingesetzt.

Strukturformel
Strukturformel von Stickstoffmonoxid
Allgemeines
Name Stickstoffmonoxid
Andere Namen
Summenformel NO
CAS-Nummer 10102-43-9
PubChem 145068
ATC-Code

R07AX01

DrugBank DB00435
Kurzbeschreibung farb- und geruchloses Gas
Eigenschaften
Molare Masse 30,01 g/mol
Aggregatzustand gasförmig
Dichte 1,25 kg/m3 (15 °C, 1 bar)
Schmelzpunkt −164 °C
Siedepunkt −152 °C
Löslichkeit 60 mg/l in Wasser (20 °C)
Dipolmoment 0,15872 D (5,29 · 10−31 C · m)
Brechungsindex 1,000297 (0 °C, 101,325 ;kPa)
Thermodynamische Eigenschaften
ΔHf0 91,3 kJ/mol

Verwendung

Technisch

Stickstoffmonoxid tritt als Zwischenprodukt bei der technischen Herstellung von Salpetersäure auf und wird zusammen mit Stickstoffdioxid zu Herstellung von Nitriten verwendet. Reinstes Stickstoffmonoxid wird als Prüfgas zur Kalibrierung von Messgeräten eingesetzt.

Medizinisch

Stickstoffmonoxid hat eine erweiternde Wirkung auf die Blutgefäße und wird in der Lunge sowie unter anderem bei Sepsis durch ein körpereigenes Enzym, die endotheliale Stickstoffmonoxid-Synthase (eNOS), aus der Aminosäure L-Arginin synthetisiert.

Das Gasgemisch INOmax des Herstellers Linde AG wurde 1999 durch die Food and Drug Administration (FDA) in den USA und 2001 durch die Europäische Kommission in der EU für die Behandlung von Neugeborenen bei Lungenversagen mit hohem Blutdruck in der Lunge zugelassen (hypoxisch respiratorische Insuffizienz, Lungenhochdruck“). Es ist weltweit das erste medizinische Gas, das als Arzneimittel zugelassen wurde, und enthält 100, 400 oder 800 ppm (0,01 %, 0,04 % oder 0,08 %) Stickstoffmonoxid als wirksamen Bestandteil, der Rest ist inerter Stickstoff. INOmax wird als komprimiertes Gas in Aluminium-Gasflaschen vertrieben. Zur Anwendung wird es der Atemluft zugesetzt, die empfohlene Dosis liegt bei 20 ppm.

Stickstoffmonoxid wirkt sehr schnell, wodurch lebensbedrohliche Komplikationen gut behandelt werden können. In der Herzchirurgie (Klappenerkrankungen, Herztransplantationen) kann NO verwendet werden, um einen erhöhten pulmonalen Druck zu behandeln. Für die Behandlung des ARDS, einer schweren Lungenfunktionsstörung, die nach Lungenverletzungen, -entzündungen und Reizgasverätzungen auftreten kann, ist ein therapeutischer Effekt von NO nicht belegt.

Physiologische Bedeutung

Stickstoffmonoxid ist ein bioaktives Molekül, das mit anderen Molekülen sowohl Redoxreaktionen als auch additive Reaktionen eingehen kann. Aufgrund seiner geringen Größe kann es in kurzer Zeit biologische Membranen durchqueren und lokal verschiedene Funktionen ausüben, von denen ein Teil destruktiv für den jeweiligen Organismus ist. Lediglich bei Archaeen ist fraglich, ob Stickstoffmonoxid eine biologische Funktion hat. Diese reicht in Tieren von der Signaltransduktion im Gefäß- und Nervensystem bis zur Rolle als reaktive Stickstoffspezies in der unspezifischen Immunabwehr. Auch in Pflanzen werden mehrere Prozesse über NO-Signale gesteuert. Auf der destruktiven Seite ist die Schädigung von Proteinen und DNA zu nennen, die mit chronischem Entzündungsgeschehen in Säugetieren und daraus folgender lokaler NO-Produktion einhergeht. Weitere Gasotransmitter sind das Kohlenstoffmonoxid und der Schwefelwasserstoff.

Geschichte

Ende der 1970er-Jahre wurde der Pharmakologe Ferid Murad erstmals auf die physiologischen Wirkungen des Stickstoffmonoxid (NO) aufmerksam. Bei Untersuchungen mit organischen Nitraten – einer Substanzgruppe, die bei akuten Brustschmerzen eingesetzt wird – entdeckte er, dass diese NO freisetzen, welches eine Erweiterung (Vasodilatation) der Blutgefäße bewirkt. Auch der Pharmakologe Robert F. Furchgott untersuchte die Auswirkungen von Medikamenten auf die Blutgefäße. Er fand heraus, dass die innerste Gefäßschicht (Endothel) eine unbekannte Substanz (Faktor) produziert, die in der darüberliegenden Muskelschicht deren Erschlaffung (Relaxierung) herbeiführt. Da er die Substanz nicht bestimmen konnte, nannte er sie EDRF (Endothelium-derived relaxing Factor, von dem Endothel stammender, gefäßmuskulatur-erschlaffender Faktor). Erst im Laufe der 1980er Jahre gelang es, die unbekannte Substanz EDRF zu entschlüsseln. Unabhängig voneinander identifizierten Louis J. Ignarro und Robert F. Furchgott EDRF als Stickstoffmonoxid.

1998 wurde der Nobelpreis für Physiologie und Medizin an die Amerikaner Robert Furchgott, Ferid Murad und Louis J. Ignarro verliehen. Den Forschern gelang es erstmals, die große Bedeutung des NO für die Blutversorgung von Organen und dessen Rolle als Botenstoff im Organismus nachzuweisen. Mit den Erkenntnissen über NO erschließen sich somit neue Möglichkeiten bei der Behandlung von Gefäßerkrankungen und den dadurch bedingten Organschäden.

Biosynthese

NO wird unter Verbrauch von NADPH, Tetrahydrobiopterin (BH4), Flavin-Adenin-Dinukleotid (FAD), Flavinmononukleotid (FMN), Häm und dem das Calcium-bindende Protein (CaM) durch NO-Synthasen (NOS) aus der Aminosäure L-Arginin und Sauerstoff hergestellt. Als weitere Endprodukte entstehen dabei Citrullin und Wasser. Es sind heute vier NOS-Isoformen identifiziert, von denen die endotheliale NOS (eNOS) und die neuronale NOS (nNOS) konstitutiv exprimiert werden, während die induzierbare NOS-Isoform (iNOS) auf transkriptioneller Ebene induzierbar ist. Alle vier Isoformen haben eine hohe Sequenz-Homologie zur Cytochrom P450-Reduktase und sind in spezifischen Zelltypen lokalisiert.

Physiologische Anpassung

Tibeter verfügen als Anpassung an das Leben im Hochland um 4000 Meter über zehnmal so viel NO im Blut wie Bewohner auf 200 Meter über dem Meeresspiegel, was zu einer Verdoppelung des Blutflusses im Vergleich zu Tiefland-Bewohnern und hierdurch zu einer optimierten Versorgung mit Sauerstoff führt.



Basierend auf einem Artikel in Wikipedia.de


Seitenende
Seite zurück
© biancahoegel.de;
Datum der letzten Änderung: Jena, den: 28.07. 2017