Total unzusammenhängender Raum

Total unzusammenhängende Räume werden im mathematischen Teilgebiet der Topologie untersucht. In jedem topologischen Raum sind einelementige Teilmengen und die leere Menge zusammenhängend. Die total unzusammenhängenden Räume sind dadurch gekennzeichnet, dass es in ihnen keine weiteren zusammenhängenden Teilmengen gibt.

Das wohl bekannteste Beispiel ist die Cantor-Menge. Total unzusammenhängende Räume treten in vielen mathematischen Theorien auf.

Definition

Ein topologischer Raum heißt total unzusammenhängend, wenn es neben der leeren und den einelementigen Teilmengen keine weiteren zusammenhängenden Teilmengen gibt.

Beispiele

Eigenschaften

Anwendungen

Boolesche Algebren

Nach dem Darstellungssatz von Stone gibt es zu jeder Booleschen Algebra einen bis auf Homöomorphie eindeutig bestimmten, total unzusammenhängenden, kompakten Hausdorrfraum X, so dass die Boolesche Algebra isomorph zur Algebra der offen-abgeschlossenen Teilmengen von X ist. Daher nennt man total unzusammenhängende, kompakte Hausdorffräume in diesem Zusammenhang auch Boolesche Räume.

C*-Algebren

Jede kommutative C*-Algebra A ist nach dem Satz von Gelfand-Neumark isometrisch isomorph zur Algebra der stetigen Funktionen {\displaystyle X\rightarrow \mathbb {C} } für einen bis auf Homöomorphie eindeutig bestimmten lokalkompakten Hausdorffraum X_{A}. Es gilt:

p-adische Zahlen

Die ganzen p-adischen Zahlen \mathbb {Z} _{p} zu einer Primzahl p sind bekanntlich als Reihen der Form \textstyle \sum_{i=0}^\infty a_ip^i mit a_i \in\{0,\ldots,p-1\} darstellbar. Damit kann man \mathbb {Z} _{p} mit \{0,\ldots,p-1\}^{\N_0} identifizieren, was \mathbb {Z} _{p} zu einem total unzusammenhängenden, kompakten Hausdorffraum macht. Dann ist der Körper der p-adischen Zahlen \textstyle \Q_p = \bigcup_{n=0}^\infty p^{-n}\Z_p ein σ-kompakter, lokalkompakter, total unzusammenhängender Raum.

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 11.03. 2023