Satz von Gelfand-Neumark
Die Gelfand-Neumark-Sätze (nach Israel Gelfand und Mark Neumark) und die GNS-Konstruktion bilden die Ausgangspunkte der mathematischen Theorie der C*-Algebren. Sie verbinden abstrakt definierte C*-Algebren mit konkreten Algebren von Funktionen und Operatoren.
Die ersten Beispiele von C*-Algebren, die man direkt nach der Definition
angeben kann, sind die Algebra
der stetigen Funktionen
auf einem lokalkompakten
Hausdorff-Raum X,
die im
Unendlichen verschwinden (siehe hierzu C0-Funktion),
und die Unter-C*-Algebren von
,
wobei
die Algebra der beschränkten, linearen
Operatoren auf einem Hilbertraum
H ist.
Die Gelfand-Neumark-Sätze zeigen, dass dies bis auf isometrische *-Isomorphie bereits alle möglichen C*-Algebren sind. Diese Resultate sind erstaunlich, denn in der Definition der C*-Algebren ist weder von lokalkompakten Hausdorff-Räumen noch von Hilberträumen die Rede.
Satz von Gelfand-Neumark, kommutativer Fall
Ist A eine kommutative C*-Algebra, so gibt es einen lokalkompakten
Hausdorff-Raum X und einen isometrischen *-Isomorphismus zwischen A und .
Konstruktion des lokalkompakten Hausdorffraums
X ist die Menge aller von der Nullabbildung
verschiedenen *-Homomorphismen
.
Zu jedem
ist durch
eine Abbildung
definiert. Schließlich kann man beweisen, dass die Topologie der punktweisen
Konvergenz X zu einem lokalkompakten Hausdorff-Raum macht und dass
ein isometrischer *-Isomorphismus zwischen A und
ist.
Bemerkungen
Nach diesem Satz kann ein Element einer kommutativen C*-Algebra wie eine stetige Funktion behandelt werden, was sich zum sogenannten stetigen Funktionalkalkül ausbauen lässt. So ist z.B. das Spektrum eines Elementes nichts weiter als der Abschluss des Bildes der zugehörigen stetigen Funktion.
Dieser Satz eröffnet ein sehr fruchtbares Zusammenspiel zwischen
algebraischen Eigenschaften von C*-Algebren und topologischen Eigenschaften
lokalkompakter Räume. Ist ,
so hat man neben vielen anderen folgende Entsprechungen:
- A hat ein Einselement.
X ist kompakt.
- A ist endlich erzeugt.
X ist homöomorph zu einer Teilmenge eines endlichdimensionalen Vektorraums.
- A ist separabel.
X genügt dem zweiten Abzählbarkeitsaxiom.
- A hat eine abzählbare Approximation
der Eins
X ist σ-kompakt.
- Der Adjunktion eines Einselementes entspricht die Einpunktkompaktifizierung von X.
- Dem Übergang zur Multiplikatorenalgebra entspricht die Stone-Čech-Kompaktifizierung.
Topologische Begriffsbildungen werden in algebraische Eigenschaften kommutativer C*-Algebren übersetzt und dann auf nicht-kommutative C*-Algebren verallgemeinert; das ist häufig der Ausgangspunkt weiterer Theorien. Aus diesem Grunde bezeichnet man die Theorie der C*-Algebren auch als nicht-kommutative Topologie.
Satz von Gelfand-Neumark, allgemeiner Fall
Ist A eine C*-Algebra, so gibt es einen Hilbert-Raum H, so dass A isometrisch *-isomorph zu einer Unter-C*-Algebra von L(H) ist.
Konstruktion des Hilbertraums
Sei
ein stetiges lineares Funktional mit
und
für alle
.
Solche Funktionale nennt man auch Zustände
von A. Zum Zustand
setze
.
Dann definiert die Formel
ein Skalarprodukt auf dem Quotientenraum
.
Die Vervollständigung
bzgl. dieses Skalarproduktes ist ein Hilbertraum
.
Für jedes
lässt sich die Abbildung
zu einem stetigen linearen Operator
auf
fortsetzen. Dann zeigt man, dass die so erklärte Abbildung
ein *-Homomorphismus ist. Schließlich konstruiert man aus der Gesamtheit der so
gewonnenen Hilberträume
einen Hilbertraum der gewünschten Art.
Bemerkungen
Ein Element einer abstrakt definierten C*-Algebra kann also wie ein beschränkter linearer Operator auf einem Hilbertraum behandelt werden.
Die oben beschriebene Konstruktion von
aus f heißt die GNS-Konstruktion,
wobei GNS für Israel Gelfand,
Mark Neumark und Irving Segal steht.
Man nennt *-Homomorphismen der Art
auch Darstellungen
von A auf H. Nach obigem Satz hat jede C*-Algebra eine treue (d.h.
injektive) Darstellung auf einem Hilbertraum. Eine Darstellung heißt topologisch
irreduzibel, wenn es keinen echten von 0 verschiedenen abgeschlossenen Unterraum
U von H gibt, für den
für alle
gilt.
Satz von Segal
Ist A eine C*-Algebra, so ist der Zustandsraum S(A) konvex und
ist genau dann ein Extremalpunkt,
wenn die Darstellung
topologisch irreduzibel ist.
Jede irreduzible Darstellung von A ist von der Form
für einen extremalen Zustand f von A.
Weitere Bemerkungen
Auf dieser Grundlage wurde eine sehr weit reichende Darstellungstheorie für C*-Algebren entwickelt. C*-Algebren lassen sich durch die Bilder ihrer irreduziblen Darstellungen weiter klassifizieren. So heißt eine C*-Algebra liminal, wenn das Bild einer jeden irreduziblen Darstellung mit der Algebra der kompakten Operatoren zusammenfällt. Eine C*-Algebra heißt postliminal, wenn das Bild einer jeden irreduziblen Darstellung die Algebra der kompakten Operatoren enthält.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 20.01. 2019