Butyllithium

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[1]

für die 11 M Lösung in n-Hexan[5]

Gefahrensymbol Gefahrensymbol Gefahrensymbol
Gefahrensymbol Gefahrensymbol
Gefahr
H- und P-Sätze H:
  • Flüssigkeit und Dampf leicht entzündbar.
  • Entzündet sich in Berührung mit Luft von selbst.
  • In Berührung mit Wasser entstehen entzündbare Gase, die sich spontan entzünden können.
  • Kann bei Verschlucken und Eindringen in die Atemwege tödlich sein.
  • Verursacht schwere Verätzungen der Haut und schwere Augenschäden.
  • Kann Schläfrigkeit und Benommenheit verursachen.
  • Kann vermutlich die Fruchtbarkeit beeinträchtigen.
  • Kann die Organe schädigen (alle betroffenen Organe nennen, sofern bekannt) bei längerer oder wiederholter Exposition (Expositionsweg angeben, wenn schlüssig belegt ist, dass diese Gefahr bei keinem anderen Expositionsweg besteht).
  • Giftig für Wasserorganismen, mit langfristiger Wirkung.
EUH: Reagiert heftig mit Wasser.
P:
  • Von Hitze, heißen Oberflächen, Funken, offenen Flammen und anderen Zündquellen fernhalten. Nicht rauchen.
  • Inhalt unter inertem Gas/… handhaben und aufbewahren. Vor Feuchtigkeit schützen.
  • Schutzhandschuhe/ Schutzkleidung/ Augenschutz/ Gesichtsschutz/ Gehörschutz/ … tragen.
  • Bei Verschlucken: Sofort Giftinformationszentrum, Arzt oder … anrufen. Kein Erbrechen herbeiführen. (Die vom Gesetzgeber offen gelassene Einfügung ist vom Inverkehrbringer zu ergänzen. Keine offizielle P-Satz-Kombination)
  • Bei Verschlucken: Mund ausspülen. Kein Erbrechen herbeiführen.
  • Bei Berührung mit der Haut [oder dem Haar]: Alle kontaminierten Kleidungsstücke sofort ausziehen. Haut mit Wasser abwaschen [oder duschen].
  • Bei Kontakt mit den Augen: Einige Minuten lang behutsam mit Wasser spülen. Vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weiter spülen. Sofort Giftinformationszentrum, Arzt oder … anrufen.
  • Bei Brand: … zum Löschen … verwenden. (Die vom Gesetzgeber offen gelassenen Einfügungen sind vom Inverkehrbringer zu ergänzen)
[1]

Unter Butyllithium versteht man in der Regel n-Butyllithium (n-BuLi), eine metallorganische Verbindung des Elements Lithium (Organolithium-Verbindung). Daneben gibt es noch die isomeren Formen sec-Butyllithium und tert-Butyllithium. Butyllithium dient als Reagenz bei der Herstellung eines naturähnlichen Kautschuks (cis 1,4 Anteil) aus Isopren. Für diesen Einsatzzweck wurden bereits 1985 etwa 600 Tonnen Butyllithium benötigt.

Strukturformel
Strukturformel von n-Butyllithium
Allgemeines
Name Butyllithium
Andere Namen
  • n-Butyllithium
  • BuLi
  • n-BuLi
  • Lithiumbutyl
Summenformel C4H9Li
Kurzbeschreibung farblose Flüssigkeit, kommerziell erhältliches n-Butyllithium ist oft gelblich[1][2]
Externe Identifikatoren/Datenbanken
CAS-Nummer Extern 109-72-8
EG-Nummer 203-698-7
ECHA-InfoCard Extern 100.003.363
PubChem Extern 61028
ChemSpider Extern 10254339
Eigenschaften
Molare Masse 64,05 g/mol
Aggregatzustand flüssig
Schmelzpunkt −34 °C (Hexamer)[3]
Löslichkeit

Gewinnung und Darstellung

Die Synthese erfolgt analog zur Herstellung von Grignard-Verbindungen durch Reaktion von 1-Chlorbutan[6] mit elementarem Lithium in Diethylether:

{\displaystyle \mathrm {2\ Li+C_{4}H_{9}Cl\longrightarrow LiC_{4}H_{9}+LiCl} }

Eigenschaften

Physikalische Eigenschaften

Tetramer des n-BuLis

n-Butyllithium ist eine sehr starke Base. Die Basizität der isomeren Butyllithiumverbindungen nimmt in der Reihe n-Butyllithium < sec-Butyllithium < tert-Butyllithium zu. Durch die große Elektronegativitätsdifferenz zwischen Kohlenstoff (2,55) und Lithium (0,98) ist die Bindung zwischen C und Li stark polarisiert. Aufgrund der Reaktionen von n-BuLi könnte man davon ausgehen, dass sich n-BuLi aus dem Butylanion und dem Lithiumkation zusammensetzt, also eine Ionenbindung besitzt. Diese Annahme ist jedoch falsch, denn n-BuLi ist nicht ionisch. Als Feststoff und sogar als Lösung existiert n-BuLi, wie die meisten Organolithiumverbindungen, als Molekülgruppen mit kovalenten Bindungen zwischen Lithium und Kohlenstoff. Für den Reinstoff wurde massenspektrometrisch eine Hexamerstruktur nachgewiesen.[7] In unpolaren Lösungsmitteln wie Cyclohexan ist n-BuLi hexamerisch, in Ether ist es tetramerisch angeordnet.

Chemische Eigenschaften

Reines n-Butyllithium ist eine pyrophore farblose Flüssigkeit, entzündet sich also in Gegenwart von Sauerstoff selbst. Es ist daher im Handel als (meist leicht gelbe) Lösung erhältlich, die zudem unter Inertgas aufbewahrt werden muss,[2] wobei Konzentrationen von 1,6 bis 11 mol/l in n-Hexan üblich sind.

Als Lösungsmittel verwendete Ether wie THF oder Diethylether sind als Lagerlösungsmittel für n-BuLi ungeeignet, da sie langsam zersetzt würden. Die Halbwertszeit von n-BuLi in THF bei 0 °C mit Deaggregierungsadditiv TMEDA (Tetramethylethylendiamin) beträgt nur 38 Minuten.[8] n-Butyllithium reagiert zudem exotherm mit Kohlendioxid und Sauerstoff, sowie mit Wasser.[9] Die Hydrolysewärme beträgt −240 kJ·mol−1[10] Die thermische Zersetzung von n-Butyllithium führt zum Lithiumhydrid und 1-Buten.[9]

Reaktionen

Lithium-Halogen-Austausch: Das Halogen in einer Verbindung kann gegen Lithium ausgetauscht werden. Dieses ergibt Reagenzien mit nukleophilen Kohlenstoffzentren, welche für die Herstellung von zahlreichen Verbindungen verwendet werden können. Den Austausch nimmt man in der Regel in Ether bei −78 °C vor (Ar steht für einen aromatischen Rest):

{\displaystyle \mathrm {LiC_{4}H_{9}+ArI\longrightarrow LiAr+C_{4}H_{9}I} }

Als starke Base (die konjugierte Säure ist Butan!) kann n-BuLi Amine und C-H-acide Verbindungen deprotonieren:

{\displaystyle \mathrm {LiC_{4}H_{9}+R{-}H\rightleftharpoons C_{4}H_{10}+R{-}Li} }

n-BuLi kann für die Herstellung von bestimmten Aldehyden und Ketonen aus disubstituierten Amiden verwendet werden:

{\displaystyle \mathrm {LiC_{4}H_{9}+RCONMe_{2}\longrightarrow LiNMe_{2}+RCOC_{4}H_{9}} }

Beim Erhitzen von n-BuLi findet eine β-Eliminierung statt. Hierdurch entstehen primär Buten und Lithiumhydrid. Butyllithium reagiert wiederum mit entstandenen Buten, wobei über Butadien auch polymere Produkte entstehen können. Der Zerfall verläuft nach einem Zeitgesetz erster Ordnung. Die Halbwertszeiten betragen bei 130 °C 315 min, bei 140 °C 115,5 min und bei 150 °C 49,5 min.[11]

{\displaystyle \mathrm {LiC_{4}H_{9}\longrightarrow LiH+CH_{2}{=}CHCH_{2}CH_{3}} }

Lagert man n-BuLi oder t-BuLi längere Zeit als etherische Lösung, z.B. in Tetrahydrofuran, so findet ein Zerfall des Lösungsmittels statt:[12]

{\displaystyle \mathrm {LiC_{4}H_{9}+THF\longrightarrow LiO{-}CH{=}CH_{2}+CH_{2}{=}CH_{2}+C_{4}H_{10}} }

Verwendung

n-BuLi hat in der modernen synthetischen organischen Chemie große Bedeutung als sehr starke Base bzw. als Lithiierungsreagenz erlangt. So wird z.B. die häufig verwendete Base Lithiumdiisopropylamid (LDA) in der Regel in situ durch Deprotonieren von Diisopropylamin mit n-BuLi in THF hergestellt.

Gehaltsbestimmung

Da Butyllithium nur begrenzt stabil und auch empfindlich gegen Wasser und Sauerstoff ist, muss der Gehalt einer Lösung vor dem Einsatz bestimmt werden. Zur Gehaltsbestimmung wird ein Aliquot der Lösung mit Wasser versetzt und gegen eine verdünnte Lösung Salzsäure titriert. Dabei wird der Gesamtbasen-Gehalt bestimmt. Um jedoch Lithiumhydrid, Lithiumhydroxyd und Alkoholate von der Gesamtbase abziehen zu können wird ein Aliquot der Lösung in THF mit einem großen Überschuss an Benzylchlorid umgesetzt. Dabei reagiert Benzylchlorid in einer Wurtz-Fittig-Reaktion zum 1,2-Diphenylethan und es entsteht Lithiumchlorid. Nach Hydrolyse wird die Restbase ebenfalls gegen eine Salzsäure titriert. Die Differenz beider Werte liefert jetzt den Anteil an Butyllithium.[13]

Sicherheitshinweise

Wie bereits erwähnt, ist reines n-BuLi äußerst pyrophor. Aber auch die Lösungen, insbesondere wenn sie höher konzentriert sind, können sich spontan entzünden. Sie reagieren zudem heftig mit Wasser zu Lithiumhydroxid und Butan. Durch längeres Stehen kann sich daher in den Lösungen ein Niederschlag bilden, der durch Eindringen von Feuchtigkeit entsteht. Es kann sich aber auch um Lithiumhydrid handeln, da n-BuLi sehr langsam in Buten und Lithiumhydrid zerfällt.

Literatur

Einzelnachweise

  1. Hochspringen nach: a b c d Eintrag zu Extern Butyllithium in der GESTIS-Stoffdatenbank des Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung, . (JavaScript erforderlich)
  2. Hochspringen nach: a b Ullmann’s Encyclopedia of Industrial Chemistry. 6. Auflage. 2002.
  3. T. Kottke, D. Stalke: Strukturen der klassischen Synthesereagentien (nBuLi)6 und (tBuLi)4 sowie vom metastabilen (tBuLi·Et2O)2. In: Angew. Chem. 105, 1993, S. 619–621, Extern doi:10.1002/ange.19931050433.
  4. Eintrag zu Butyllithium. In: Römpp Online. Georg Thieme Verlag.
  5. Teile der Gefahrstoffkennzeichnung beziehen sich auf die Gefahren, die durch das Lösungsmittel verursacht werden.
  6. K. Ziegler, H. Colonius: Untersuchungen über alkali-organische Verbindungen. V. Eine bequeme Synthese einfacher Lithiumalkyle. In: Justus Liebigs Ann. Chem. 479, 1930, S. 135–149, Extern doi:10.1002/jlac.19304790111.
  7. D. Plavsic, D. Srzic, L. Klasinc: Mass spectrometric investigations of alkyllithium compounds in the gas phase. In: J. Phys. Chem. 90, 1986, S. 2075–2080, Extern doi:10.1021/j100401a020.
  8. P. Stanetty, H. Koller, M. Mihovilovic: Directed ortho lithiation of phenylcarbamic acid 1,1-dimethylethyl ester (N-BOC-aniline). Revision and improvements. In: J. Org. Chem. 57, 1992, S. 6833–6837, Extern doi:10.1021/jo00051a030.
  9. Hochspringen nach: a b T. L. Rathman, J. A. Schwindeman: Preparation, Properties, and Safe Handling of Commercial Organolithiums: Alkyllithiums, Lithium sec-Organoamides, and Lithium Alkoxides. In: Org. Process Res. Dev. 18, 2014, S. 1192–1210, Extern doi:10.1021/op500161b.
  10. P. A. Fowell, C. T. Mortimer: Heats of Formation and Bond Energies. Part V. n-Butyllithium. In: J. Chem. Soc. 1961, S. 3793–3796, Extern doi:10.1039/JR9610003793.
  11. R. A. Finnegan, H. W. Kutta: Organometallic Chemistry. X1I. The Thermal Decomposition of n-Butyllithium, a Kinetic Study. In: J. Org. Chem. 30, 1965, S. 4138–4144, Extern doi:10.1021/jo01023a038.
  12. J. Clayden, S. A. Yasin: Pathways for decomposition of THF by organolithiums: the role of HMPA. In: New J. Chem. 26, 2002, S. 191–192, Extern doi:10.1039/b109604d.
  13. Chemetall, Hausmitteilung Sparte Lithium 1995, 1-8.
Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 01.05. 2024