Relativitätstheorie
Die Relativitätstheorie befasst sich mit der Struktur von Raum und Zeit sowie mit dem Wesen der Gravitation. Sie besteht aus zwei maßgeblich von Albert Einstein geschaffenen physikalischen Theorien, der 1905 veröffentlichten speziellen Relativitätstheorie und der 1916 abgeschlossenen allgemeinen Relativitätstheorie. Die spezielle Relativitätstheorie beschreibt das Verhalten von Raum und Zeit aus der Sicht von Beobachtern, die sich relativ zueinander bewegen, und die damit verbundenen Phänomene. Darauf aufbauend führt die allgemeine Relativitätstheorie die Gravitation auf eine Krümmung von Raum und Zeit zurück, die unter anderem durch die beteiligten Massen verursacht wird.
In diesem Artikel werden die grundlegenden Strukturen und Phänomene lediglich zusammenfassend aufgeführt. Für Erläuterungen und Details siehe die Artikel spezielle Relativitätstheorie und allgemeine Relativitätstheorie sowie die Verweise im Text.
Der in der physikalischen Fachsprache häufig verwendete Ausdruck relativistisch bedeutet üblicherweise, dass eine Geschwindigkeit nicht vernachlässigbar klein gegenüber der Lichtgeschwindigkeit ist; die Grenze wird oft bei 10 Prozent gezogen. Bei relativistischen Geschwindigkeiten gewinnen die Effekte der speziellen Relativitätstheorie eine zunehmende Bedeutung, die Abweichungen von der klassischen Mechanik können dann nicht mehr vernachlässigt werden.
Bedeutung
Die Relativitätstheorie hat das Verständnis von Raum und Zeit revolutioniert und Zusammenhänge aufgedeckt, die sich der anschaulichen Vorstellung entziehen. Diese lassen sich jedoch mathematisch präzise in Formeln fassen und durch Experimente bestätigen. Die Relativitätstheorie enthält die newtonsche Physik als Grenzfall. Sie erfüllt damit das Korrespondenzprinzip.
Das Standardmodell der Teilchenphysik beruht auf der Vereinigung der speziellen Relativitätstheorie mit der Quantentheorie zu einer relativistischen Quantenfeldtheorie.
Die allgemeine Relativitätstheorie ist neben der Quantenphysik eine der beiden Säulen des Theoriengebäudes Physik. Es wird allgemein angenommen, dass eine Vereinigung dieser beiden Säulen zu einer Theory of Everything (Theorie von allem) im Prinzip möglich ist. Trotz großer Anstrengungen ist so eine Vereinigung jedoch noch nicht vollständig gelungen. Sie zählt zu den großen Herausforderungen der physikalischen Grundlagenforschung.
Die spezielle Relativitätstheorie
Das Relativitätsprinzip
Die beiden folgenden Feststellungen lassen sich als Axiome der Relativitätstheorie interpretieren, aus denen alles Weitere hergeleitet werden kann:
- Messen verschiedene Beobachter die Geschwindigkeit eines Lichtstrahls relativ zu ihrem Standort, so kommen sie unabhängig von ihrem eigenen Bewegungszustand zum selben Ergebnis. Dies ist das sogenannte Prinzip von der Konstanz der Lichtgeschwindigkeit.
- Die physikalischen Gesetze haben für alle Beobachter, die sich mit konstanter Geschwindigkeit bewegen, also keiner Beschleunigung unterliegen, dieselbe Gestalt. Diesen Umstand nennt man Relativitätsprinzip. Man spricht von Inertialsystemen, in denen sich diese Beobachter befinden.
Das Relativitätsprinzip an sich ist wenig spektakulär, denn es gilt auch für die newtonsche Mechanik. Aus ihm folgt unmittelbar, dass es keine Möglichkeit gibt, eine absolute Geschwindigkeit eines Beobachters im Raum zu ermitteln und damit ein absolut ruhendes Bezugssystem zu definieren. Ein solches Ruhesystem müsste sich in irgendeiner Form von allen anderen unterscheiden im Widerspruch zum Relativitätsprinzip, wonach die Gesetze der Physik in allen Bezugssystemen dieselbe Gestalt haben. Nun beruhte vor der Entwicklung der Relativitätstheorie die Elektrodynamik auf der Annahme des Äthers als Träger elektromagnetischer Wellen. Würde ein solcher Äther als starres Gebilde den Raum füllen, dann würde er ein Bezugssystem definieren, in dem im Widerspruch zum Relativitätsprinzip die physikalischen Gesetze eine besonders einfache Form hätten und welches überdies das einzige System wäre, in dem die Lichtgeschwindigkeit konstant ist. Jedoch scheiterten alle Versuche, die Existenz des Äthers nachzuweisen, wie beispielsweise das berühmte Michelson-Morley-Experiment von 1887.
Durch die Aufgabe der konventionellen Vorstellungen von Raum und Zeit und die Verwerfung der Ätherhypothese gelang es Einstein, den scheinbaren Widerspruch zwischen dem Relativitätsprinzip und der aus der Elektrodynamik folgenden Konstanz der Lichtgeschwindigkeit aufzulösen. Nicht zufällig waren es Experimente und Überlegungen zur Elektrodynamik, die zur Entdeckung der Relativitätstheorie führten. So lautete der unscheinbare Titel der einsteinschen Publikation von 1905, die die spezielle Relativitätstheorie begründete, Zur Elektrodynamik bewegter Körper.
Relativität von Raum und Zeit
Raum- und Zeitangaben sind in der Relativitätstheorie keine universell gültigen Ordnungsstrukturen. Vielmehr werden der räumliche und zeitliche Abstand zweier Ereignisse oder auch deren Gleichzeitigkeit von Beobachtern mit verschiedenen Bewegungszuständen unterschiedlich beurteilt. Bewegte Objekte erweisen sich im Vergleich zum Ruhezustand in Bewegungsrichtung als verkürzt und bewegte Uhren als verlangsamt. Da jedoch jeder gleichförmig bewegte Beobachter den Standpunkt vertreten kann, er sei in Ruhe, beruhen diese Beobachtungen auf Gegenseitigkeit, das heißt, zwei relativ zueinander bewegte Beobachter sehen die Uhren des jeweils anderen langsamer gehen. Außerdem sind aus ihrer Sicht die Meterstäbe des jeweils anderen kürzer als ein Meter, wenn sie längs der Bewegungsrichtung ausgerichtet sind. Die Frage, wer die Situation korrekt beschreibt, ist hierbei prinzipiell nicht zu beantworten und daher sinnlos.
Diese Längenkontraktion und Zeitdilatation lassen sich vergleichsweise anschaulich anhand von Minkowski-Diagrammen und anhand des bekannten Zwillingsparadoxons nachvollziehen. In der mathematischen Formulierung ergeben sie sich aus der Lorentz-Transformation, die den Zusammenhang zwischen den Raum- und Zeitkoordinaten der verschiedenen Beobachter beschreibt. Diese Transformation lässt sich direkt aus den beiden obigen Axiomen und der Annahme, dass sie linear ist, herleiten.
Die meisten dieser relativistisch erklärbaren Phänomene machen sich erst bei Geschwindigkeiten bemerkbar, die im Vergleich zur Lichtgeschwindigkeit nennenswert groß sind. Solche Geschwindigkeiten werden im Alltag nicht annähernd erreicht.
Lichtgeschwindigkeit als Grenze
Kein Objekt und keine Information kann sich schneller bewegen als das Licht im Vakuum. Nähert sich die Geschwindigkeit eines materiellen Objektes der Lichtgeschwindigkeit, so strebt der Energieaufwand für eine weitere Beschleunigung über alle Grenzen, weil die kinetische Energie mit zunehmender Annäherung an die Lichtgeschwindigkeit mit wachsender Geschwindigkeit immer steiler ansteigt. Zum Erreichen der Lichtgeschwindigkeit müsste unendlich viel Energie aufgebracht werden.
Dieser Umstand ist eine Folge der Struktur von Raum und Zeit und keine Eigenschaft des Objekts, wie beispielsweise eines lediglich unvollkommenen Raumschiffes. Würde sich ein Objekt mit Überlichtgeschwindigkeit von A nach B bewegen, so gäbe es immer einen relativ zu ihm bewegten Beobachter, der eine Bewegung von B nach A wahrnehmen würde, wiederum ohne dass die Frage, wer die Situation korrekt beschreibt, einen Sinn gäbe. Das Kausalitätsprinzip wäre dann verletzt, da die Reihenfolge von Ursache und Wirkung nicht mehr definiert wäre. Ein solches Objekt würde sich übrigens für jeden Beobachter mit Überlichtgeschwindigkeit bewegen.
Vereinigung von Raum und Zeit zur Raumzeit
Raum und Zeit erscheinen in den Grundgleichungen der Relativitätstheorie formal fast gleichwertig nebeneinander und lassen sich daher zu einer vierdimensionalen Raumzeit vereinigen. Dass Raum und Zeit auf verschiedene Weise in Erscheinung treten, ist eine Eigenheit der menschlichen Wahrnehmung. Mathematisch lässt der Unterschied sich auf ein einziges Vorzeichen zurückführen, durch das sich die Definition eines Abstandes im euklidischen Raum von der Definition des Abstands in der vierdimensionalen Raumzeit unterscheidet. Aus gewöhnlichen Vektoren im dreidimensionalen Raum werden dabei sogenannte Vierervektoren.
In der Raumzeit gibt es aufgrund der Relativität von Längen und Zeitspannen drei klar unterscheidbare Bereiche für jeden Beobachter:
- Im Zukunftslichtkegel liegen alle Punkte, die der Beobachter mit maximal Lichtgeschwindigkeit erreichen oder an die er ein Lichtsignal senden kann.
- Der Vergangenheitslichtkegel umfasst alle Punkte, von denen aus ein Signal mit maximal Lichtgeschwindigkeit den Beobachter erreichen kann.
- Alle restlichen Punkte heißen „vom Beobachter raumartig getrennt“. In diesem Bereich lassen sich Zukunft und Vergangenheit nicht definieren.
Praktische Anwendung finden die Raumzeit-Vierervektoren beispielsweise in Berechnungen der Kinematik schneller Teilchen.
Äquivalenz von Masse und Energie
Einem System mit der Masse m lässt sich auch im unbewegten Zustand eine Energie E zuordnen, und zwar nach
wobei c die Geschwindigkeit des Lichtes ist. Diese Formel ist eine der berühmtesten in der Physik. Oft wird irreführend behauptet, sie habe die Entwicklung der Atombombe ermöglicht. Die Wirkungsweise der Atombombe kann jedoch mit ihr nicht erklärt werden. Allerdings konnte schon 1939 kurz nach der Entdeckung der Kernspaltung mit dieser Formel und den schon bekannten Massen der Atome durch Lise Meitner die enorme Freisetzung von Energie abgeschätzt werden. Diese Massenabnahme tritt auch schon bei chemischen Reaktionen auf, war jedoch dort mit den damaligen Messmethoden nicht bestimmbar, anders als im Fall von Kernreaktionen.
Magnetfelder in der Relativitätstheorie
Die Existenz magnetischer Kräfte ist untrennbar mit der Relativitätstheorie verknüpft. Eine isolierte Existenz des coulombschen Gesetzes für elektrische Kräfte wäre nicht mit der Struktur von Raum und Zeit verträglich. So sieht ein Beobachter, der relativ zu einem System statischer elektrischer Ladungen ruht, kein Magnetfeld, anders als ein Beobachter, der sich relativ zu ihm bewegt. Übersetzt man die Beobachtungen des ruhenden Beobachters über eine Lorentz-Transformation in die des Bewegten, so stellt sich heraus, dass dieser neben der elektrischen Kraft eine weitere, magnetische, Kraft wahrnimmt. Die Existenz des Magnetfeldes in diesem Beispiel lässt sich daher auf die Struktur von Raum und Zeit zurückführen. Unter diesem Gesichtspunkt wirkt auch die im Vergleich zum Coulombgesetz komplizierte und auf den ersten Blick wenig plausible Struktur des vergleichbaren biot-savartschen Gesetzes für Magnetfelder weniger verwunderlich. Im mathematischen Formalismus der Relativitätstheorie werden das elektrische und das magnetische Feld zu einer Einheit, dem vierdimensionalen elektromagnetischen Feldstärketensor, zusammengefasst, ganz analog zur Vereinigung von Raum und Zeit zur vierdimensionalen Raumzeit.
Die allgemeine Relativitätstheorie
Gravitation und die Krümmung der Raumzeit
Die allgemeine Relativitätstheorie führt die Gravitation auf ein geometrisches Phänomen in einer gekrümmten Raumzeit zurück, indem sie feststellt:
- Energie krümmt die Raumzeit in ihrer Umgebung.
- Ein Gegenstand, auf den nur gravitative Kräfte wirken, bewegt sich zwischen zwei Punkten in der Raumzeit stets auf einer sogenannten Geodäte.
Entzieht sich die vierdimensionale Raumzeit der speziellen Relativitätstheorie bereits einer anschaulichen Vorstellbarkeit, so gilt das für eine zusätzlich gekrümmte Raumzeit erst recht. Zur Veranschaulichung kann man jedoch Situationen mit reduzierter Anzahl von Dimensionen betrachten. So entspricht im Fall einer 2-dimensionalen gekrümmten Landschaft eine Geodäte dem Weg, den ein Fahrzeug mit geradeaus fixierter Lenkung nehmen würde. Würden zwei solche Fahrzeuge am Äquator einer Kugel nebeneinander exakt parallel Richtung Norden starten, dann würden sie sich am Nordpol treffen. Ein Beobachter, dem die Kugelgestalt der Erde verborgen bliebe, würde daraus auf eine Anziehungskraft zwischen den beiden Fahrzeugen schließen. Es handelt sich aber um ein rein geometrisches Phänomen. Gravitationskräfte werden daher in der allgemeinen Relativitätstheorie gelegentlich auch als Scheinkräfte bezeichnet.
Da der geodätische Weg durch die Raumzeit von ihrer Geometrie und nicht von der Masse oder sonstigen Eigenschaften des fallenden Körpers abhängt, fallen alle Körper im Gravitationsfeld gleich schnell, wie bereits Galilei feststellte. Dieser Umstand wird in der newtonschen Mechanik durch die Äquivalenz von träger und schwerer Masse beschrieben, die auch der allgemeinen Relativitätstheorie zugrunde liegt.
Die mathematische Struktur der allgemeinen Relativitätstheorie
Während viele Aspekte der speziellen Relativitätstheorie in ihrer einfachsten Formulierung auch mit geringen mathematischen Kenntnissen nachvollziehbar sind, ist die Mathematik der allgemeinen Relativitätstheorie deutlich anspruchsvoller. Die Beschreibung einer krummen Raumzeit erfolgt mit den Methoden der Differentialgeometrie, die die euklidische Geometrie des uns vertrauten flachen Raumes ablöst.
Zur Beschreibung von Krümmung wird zur Anschauung meist ein gekrümmtes Objekt in einen höherdimensionalen Raum eingebettet. Zum Beispiel stellt man sich eine zweidimensionale Kugeloberfläche üblicherweise in einem dreidimensionalen Raum vor. Krümmung kann jedoch ohne die Annahme eines solchen Einbettungsraumes beschrieben werden, was in der allgemeinen Relativitätstheorie auch geschieht. Es ist beispielsweise möglich, Krümmung dadurch zu beschreiben, dass die Winkelsumme von Dreiecken nicht 180° entspricht.
Die Entstehung der Krümmung wird durch die einsteinschen Feldgleichungen beschrieben. Dabei handelt es sich um Differentialgleichungen eines Tensorfeldes mit zehn Komponenten, die nur in speziellen Fällen analytisch, das heißt in Form einer mathematischen Gleichung, lösbar sind. Für komplexe Systeme wird daher üblicherweise mit Näherungsmechanismen gearbeitet.
Uhren im Gravitationsfeld
In der allgemeinen Relativitätstheorie hängt der Gang von Uhren nicht nur von ihrer relativen Geschwindigkeit ab, sondern auch von ihrem Ort im Gravitationsfeld. Eine Uhr auf einem Berg geht schneller als eine im Tal. Dieser Effekt ist zwar im irdischen Gravitationsfeld nur gering, er wird jedoch beim GPS-Navigationssystem zur Vermeidung von Fehlern bei der Positionsbestimmung über eine entsprechende Frequenzkorrektur der Funksignale berücksichtigt.
Schwarze Löcher
Eine weitere Vorhersage der allgemeinen Relativitätstheorie sind Schwarze Löcher. Diese Objekte haben eine so starke Gravitation, dass sie sogar Licht „einfangen“ können, so dass es nicht wieder aus dem schwarzen Loch herauskommen kann. Einstein konnte sich mit diesem Gedanken nicht anfreunden und meinte, es müsse einen Mechanismus geben, der die Entstehung solcher Objekte verhindert. Heutige Beobachtungen legen aber nahe, dass es solche Schwarzen Löcher im Universum tatsächlich gibt, und zwar als Endstadium der Sternentwicklung bei sehr massereichen Sternen und in den Zentren von Galaxien.
Gravitationswellen
Die allgemeine Relativitätstheorie erlaubt die Existenz von Gravitationswellen, lokalen Deformationen der Raumzeit, die sich mit Lichtgeschwindigkeit ausbreiten. Sie entstehen bei der Beschleunigung von Massen, allerdings sind sie nur sehr klein. Daher konnten Gravitationswellen lange Zeit nur indirekt bestätigt werden, etwa durch Beobachtungen an Doppelsternsystemen mit Pulsaren. Russell Hulse und Joseph Taylor erhielten dafür 1993 den Nobelpreis für Physik. Erst beim LIGO-Experiment, am 14. September 2015 um 11:51 MESZ, gelang der direkte Nachweis.
Allgemeine Relativitätstheorie
Während an der Entwicklung der speziellen Relativitätstheorie eine Reihe von Wissenschaftlern beteiligt war − wobei Einsteins Arbeit von 1905 sowohl ein Ende als auch einen Neuanfang darstellte − war die Entwicklung der allgemeinen Relativitätstheorie, was ihre grundlegenden physikalischen Aussagen betraf, praktisch die alleinige Errungenschaft Einsteins.
Diese Entwicklung begann 1907 mit dem Äquivalenzprinzip, wonach träge und schwere Masse äquivalent sind. Daraus leitete er die gravitative Rotverschiebung ab und stellte fest, dass Licht im Gravitationsfeld abgelenkt wird, wobei er die dabei entstehende Verzögerung, die so genannte Shapiro-Verzögerung, bedachte. 1911 führte er mit verfeinerten Methoden diese Grundgedanken weiter. Diesmal vermutete er auch, dass die Lichtablenkung im Gravitationsfeld messbar ist. Der von ihm zu dieser Zeit vorhergesagte Wert war jedoch noch um einen Faktor 2 zu klein.
Im weiteren Verlauf erkannte Einstein, dass Minkowskis vierdimensionaler Raumzeitformalismus, welchem er bislang skeptisch gegenüberstand, eine sehr wichtige Bedeutung bei der neuen Theorie zukam. Auch wurde ihm nun klar, dass die Mittel der euklidischen Geometrie nicht ausreichten, um seine Arbeit fortsetzen zu können. 1913 konnte er mit der mathematischen Unterstützung Marcel Grossmanns die im 19. Jahrhundert entwickelte nichteuklidische Geometrie in seine Theorie integrieren, ohne jedoch die vollständige Kovarianz, d.h. die Übereinstimmung aller Naturgesetze in den Bezugssystemen, zu erreichen. 1915 waren diese Probleme nach einigen Fehlschlägen überwunden, und Einstein konnte schließlich die korrekten Feldgleichungen der Gravitation ableiten. Nahezu gleichzeitig gelang dies auch David Hilbert. Einstein errechnete den korrekten Wert für die Periheldrehung des Merkurs, und für die Lichtablenkung das Doppelte des 1911 erhaltenen Wertes. 1919 wurde dieser Wert erstmals bestätigt, was den Siegeszug der Theorie in Physikerkreisen und auch in der Öffentlichkeit einleitete.
Danach versuchten sich viele Physiker an der exakten Lösung der Feldgleichungen, was in der Aufstellung diverser kosmologischer Modelle und in Theorien wie die der Schwarzen Löcher mündete.
Weitere geometrische Theorien
Nach der Erklärung der Gravitation als geometrisches Phänomen lag es nahe, auch die anderen damals bekannten Grundkräfte, die elektrische und die magnetische, auf geometrische Effekte zurückzuführen. Theodor Kaluza (1921) und Oskar Klein (1926) nahmen dazu eine zusätzliche in sich geschlossene Dimension des Raumes mit subatomarer Länge an, derart dass sie uns verborgen bleibt. Sie blieben jedoch mit ihrer Theorie erfolglos. Auch Einstein arbeitete lange vergeblich daran, eine solche einheitliche Feldtheorie zu schaffen.
Nach der Entdeckung weiterer Grundkräfte der Natur erlebten diese sogenannten Kaluza-Klein-Theorien eine Renaissance – allerdings auf der Basis der Quantentheorie. Die heute aussichtsreichste Theorie zur Vereinigung der Relativitätstheorie und der Quantentheorie dieser Art, die Stringtheorie, geht von sechs oder sieben verborgenen Dimensionen von der Größe der Planck-Länge und damit von einer zehn- beziehungsweise elfdimensionalen Raumzeit aus.
Experimentelle Bestätigungen
Der erste Erfolg der speziellen Relativitätstheorie war die Auflösung des Widerspruches zwischen dem Ergebnis des Michelson-Morley-Experiments und der Theorie der Elektrodynamik, der überhaupt als Anlass für ihre Entdeckung angesehen werden kann. Seither hat sich die spezielle Relativitätstheorie in der Interpretation unzähliger Experimente bewährt. Ein überzeugendes Beispiel ist der Nachweis von Myonen in der Höhenstrahlung, die auf Grund ihrer kurzen Lebensdauer nicht die Erdoberfläche erreichen könnten, wenn nicht auf Grund ihrer hohen Geschwindigkeit die Zeit für sie langsamer gehen würde, beziehungsweise sie die Flugstrecke längenkontrahiert erfahren würden. Dieser Nachweis gelang zum Teil bei den Ballonflügen in die Stratosphäre des Schweizer Physikers Auguste Piccard in den Jahren 1931 und 1932, die unter Mitwirkung von Einstein vorbereitet wurden.
Hingegen gab es zur Zeit der Veröffentlichung der allgemeinen Relativitätstheorie einen einzigen Hinweis für ihre Richtigkeit, die Periheldrehung des Planeten Merkurs. 1919 stellte Arthur Stanley Eddington bei einer Sonnenfinsternis eine Verschiebung der scheinbaren Position der Sterne nahe der Sonne fest und lieferte mit diesem sehr direkten Hinweis auf eine Krümmung des Raums eine weitere Bestätigung der Theorie.
Die Relativitätstheorie hat sich bis heute in der von Einstein vorgegebenen Form gegen alle Alternativen, die insbesondere zu seiner Theorie der Gravitation vorgeschlagen wurden, behaupten können. Die bedeutendste war die Jordan-Brans-Dicke-Theorie, die jedoch aufwändiger war. Ihre Gültigkeit ist bisher nicht widerlegt worden. Der Bereich, den der entscheidende Parameter nach heutigem experimentellen Stand einnehmen kann, ist jedoch stark eingeschränkt.
Basierend auf einem Artikel in: Wikipedia.deSeite zurück
© biancahoegel.de;
Datum der letzten Änderung: Jena, den: 03.09. 2021