A4 (Gruppe)
Die (alternierende Gruppe 4. Grades) ist eine bestimmte 12-elementige Gruppe, die im mathematischen Teilgebiet der Gruppentheorie untersucht wird. Sie steht in enger Beziehung zur symmetrischen Gruppe , es handelt sich bei der um die Untergruppe, die aus allen geraden Permutationen besteht. Geometrisch entsteht die als Gruppe der Drehungen des regelmäßigen Tetraeders auf sich.
Geometrische Einführung
Betrachtet man die Drehungen, die ein regelmäßiges Tetraeder in sich selbst überführen, so findet man 12 Möglichkeiten:
- die Identität ,
- drei Drehungen um 180° um Achsen, die durch die Mittelpunkte zweier gegenüberliegender Kanten verlaufen,
- vier Drehungen um 120° um Höhen des Tetraeders,
- vier Drehungen um 240° um Höhen des Tetraeders.
Spiegelungen werden hier nicht betrachtet. Für die Drehungen wählen wir die folgenden Bezeichnungen:
- ist die Drehung um 180° um die Gerade, die durch die Mittelpunkte der Kanten 12 und 34 läuft (1,2,3 und 4 bezeichnen Tetraederecken wie in nebenstehender Zeichnung).
- ist die Drehung um 180° um die Gerade, die durch die Mittelpunkte der Kanten 13 und 24 läuft.
- ist die Drehung um 180° um die Gerade, die durch die Mittelpunkte der Kanten 14 und 23 läuft.
- sei die Drehung um 120° um die durch die Ecke verlaufende Höhe, und zwar im positiven Drehsinn (das heißt im Gegenuhrzeigersinn) von der durchstoßenen Ecke aus gesehen.
- sei die Drehung um 240° um die durch die Ecke verlaufende Höhe, ebenfalls mit dem oben angegebenen Drehsinn.
Diese Drehungen lassen sich durch Hintereinanderausführung kombinieren, wodurch man wieder eine Drehung aus obiger Liste erhält. Man schreibt einfach zwei Drehungen (oft ohne Verknüpfungszeichen, oder mit oder ) nebeneinander und meint damit, dass zuerst die rechtsstehende und dann die linksstehende Drehung auszuführen ist. Die Schreibweise macht bereits deutlich, dass die Drehung um 240° gleich der zweifachen Hintereinanderausführung der Drehung um 120° ist.
Man erhält auf diese Weise die 12-elementige Gruppe aller Drehungen des regelmäßigen Tetraeders auf sich.
Trägt man alle so gebildeten Verknüpfungen in eine Verknüpfungstafel ein, so erhält man
Darstellung als Permutationsgruppe
Die oben beschriebenen Drehungen sind bereits dadurch festgelegt, wie die mit 1,2,3 und 4 bezeichneten Ecken aufeinander abgebildet werden. Jedes Element der kann daher als Permutation der Menge aufgefasst werden. Verwendet man die übliche Zweizeilenform und die Zykelschreibweise, so erhält man:
Man sieht hier mit einem Blick, dass jedes Element der als ein Produkt aus einer geraden Anzahl von Transpositionen (= Zweierpermutationen) geschrieben werden kann. Die zugehörigen Permutationen nennt man ebenfalls gerade, das heißt die besteht genau aus den geraden Permutationen der Menge . Damit tritt die als Kern der Signum-Abbildung: auf, wobei die symmetrische Gruppe vierten Grades ist.
Eigenschaften
Untergruppen
Sämtliche Untergruppen der sind in nebenstehender Zeichnung angegeben.
ist zur Kleinschen Vierergruppe isomorph. Gemäß dem Satz von Lagrange teilt die Ordnung einer jeden Untergruppe die Gruppenordnung, in diesem Falle 12. Umgekehrt muss es aber nicht zu jedem Teiler der Gruppenordnung eine Untergruppe dieser Ordnung geben. Die ist ein Beispiel für dieses Phänomen, denn sie hat keine Untergruppe der Ordnung 6.
Normalteiler, Auflösbarkeit
Die ist nicht abelsch, denn
ist aber auflösbar, wie die Reihe
zeigt. Das Zeichen bedeutet “ist Normalteiler in”.
ist die Kommutatorgruppe von , insbesondere also ein Normalteiler und es gilt
Die zwei- und dreielementigen Untergruppen sind keine Normalteiler.
Semidirektes Produkt
Da und teilerfremde Gruppenordnungen haben, folgt aus dem Satz von Schur-Zassenhaus, dass die zum semidirekten Produkt isomorph ist, wobei die Restklasse auf den Automorphismus abbildet.
Erzeuger und Relationen
Man kann Gruppen auch dadurch beschreiben, dass man ein Erzeugendensystem und Relationen, die die Erzeuger erfüllen müssen, angibt. Erzeuger und Relationen notiert man, durch das Zeichen | getrennt, in spitzen Klammern. Die Gruppe ist dann die von den Erzeugern erzeugte freie Gruppe modulo dem von den Relationen erzeugten Normalteiler. In diesem Sinne ist:
Man sieht leicht, dass und die Relationen erfüllen und dass und die gesamte Gruppe erzeugen, was für den Beweis aber noch nicht ausreicht.
Charaktertafel
Die Charaktertafel der sieht wie folgt aus:
Siehe auch
Basierend auf einem Artikel in: Wikipedia.de Seite zurück© biancahoegel.de
Datum der letzten Änderung: Jena, den: 01.01. 2020