Tangentialraum

In der Differentialgeometrie
ist ein Tangentialraum
ein Vektorraum, der eine differenzierbare
Mannigfaltigkeit
am Punkt
linear approximiert. Sei
eine differenzierbare Kurve mit
und dem Kurvenparameter
,
dann ist:
ein Tangentialvektor. Die Tangentialvektoren in einem Punkt
spannen einen Vektorraum auf, den Tangentialraum
.
Siehe auch Tangentialbündel.
In der algebraischen Geometrie muss man diesen Definitionsansatz modifizieren, um singuläre Punkte und wechselnde Dimensionen zu berücksichtigen.
Dieser Artikel befasst sich nur mit dem Tangentialraum über einer differenzierbaren Mannigfaltigkeit im Sinne der Differentialgeometrie.
Übersicht
Am einfachsten ist eine differenzierbare Mannigfaltigkeit zu
veranschaulichen, die als Untermannigfaltigkeit
in einen Euklidischen
Raum (z.B. den )
eingebettet ist. Als Beispiel soll die Sphäre
(= Kugeloberfläche)
im
dienen. Der Tangentialraum in einem Punkt
ist dann die Ebene durch den Nullpunkt, die parallel zur Tangentialebene an die
Kugel im Punkt
ist.
Ein Vektorfeld ordnet jedem
Punkt
einer Mannigfaltigkeit
einen Vektor aus dem zugehörigen Tangentialraum
zu. Zum Beispiel könnte man mit einem Vektorfeld die Windstärke und -richtung
auf der Erdoberfläche angeben.
Alle Tangentialräume einer Mannigfaltigkeit
werden als Tangentialbündel
von
zusammengefasst; das Tangentialbündel ist selbst eine Mannigfaltigkeit; seine
Dimension ist doppelt so groß wie die von
.
Formale Definitionen
In der Literatur ist es üblich, gleich drei verschiedene Definitionen anzugeben, die einer geometrischen, einer algebraischen und einer theoretisch-physikalischen (auf Tensoren hinarbeitenden) Sichtweise entsprechen. Der anschauliche geometrische Zugang erweist sich in der Anwendung jedoch gleichsam als der am mühsamsten zu handhabende.
Die beiden auf die geometrische Definition folgenden algebraischen
Definitionen des Tangentialraums funktionieren allerdings nur für
Mannigfaltigkeiten der Klasse ,
aber nicht für
mit
.
Geometrische Definition: Richtungsfelder von Kurven
Gegeben seien eine -dimensionale
-Mannigfaltigkeit
mit
,
ein Punkt
aus
,
eine offene Umgebung
von
und eine Karte
.
Ist
mit
eine differenzierbare Kurve in
,
so ist
eine differenzierbare Kurve im
.
Die Ableitung
existiert also. Diese Ableitung ist ein Vektor im
.
Kurven
,
für die
übereinstimmt, bilden eine Äquivalenzklasse.
Eine solche Äquivalenzklasse nennt man einen Tangentialvektor von
in
und schreibt dafür
.
Der Tangentialraum
ist die Menge aller dieser Tangentialvektoren; man kann zeigen, dass er nicht
von der Wahl der Karte
abhängt.
Es bleibt zu zeigen, dass
durch Erklärung von Vektoraddition und Skalarmultiplikation
zu einem Vektorraum wird. Dazu
definiert man die Abbildung
durch
,
wobei die Funktion
auf der rechten Seite ein beliebiger Repräsentant der Äquivalenzklasse
ist. Man zeigt nun, dass diese Abbildung bijektiv ist und überträgt
mit ihrer Hilfe die Vektorraumoperationen von
nach
;
man zeigt außerdem, dass diese Konstruktion von der Wahl der Karte
unabhängig ist.
Erste Algebraische Definition: verallgemeinerte Ableitungen
Sei
eine
-Mannigfaltigkeit.
Eine Funktion
gehört zur Klasse
,
falls
für jede Karte
unendlich oft differenzierbar ist. Das so definierte
ist eine assoziative
Algebra.
Fixieren wir einen Punkt
in
.
Eine Derivation
an
ist eine lineare
Abbildung
,
die für alle
und
in
die (analog zur Produktregel)
folgende Eigenschaft hat:
.
Diese Derivationen bilden auf natürliche Weise einen reellen Vektorraum; dies ist der
Tangentialraum
.
Die Beziehung zwischen den zuvor definierten Tangentialvektoren und den
Derivationen ist wie folgt: falls
eine Kurve mit Tangentialvektor
ist, dann ist die entsprechende Derivation
(mit der Ableitung im üblichen Sinne, da
eine Funktion von
nach
ist).
Zweite Algebraische Definition: Dualraum von 
Sei
wieder eine
-Mannigfaltigkeit
und
ein Punkt in
.
Betrachten wir nun das Ideal
von
,
das aus allen glatten Funktionen
besteht, die
auf
abbilden. Dann sind
und
reelle Vektorräume, und
wird als der Dualraum des Quotientenraums
definiert.
wird auch als Kotangentialraum
bezeichnet (siehe unten).
Während diese Definition die abstrakteste ist, ist sie auch diejenige, die man am leichtesten auf andere Situationen übertragen kann, beispielsweise auf Varietäten, wie sie in der algebraischen Geometrie betrachtet werden.
Sei
eine Derivation an
.
Dann ist
für jedes
in
(denn es existieren
mit
,
somit
),
womit
eine lineare Abbildung
induziert. Umgekehrt ist
eine Derivation, wenn
eine lineare Abbildung ist. Dies zeigt, dass sich der über Derivationen und der
über
definierte Tangentialraum entsprechen.
Tangentialraum in der algebraischen Geometrie
Die beiden algebraischen Definitionen funktionieren genauso auch für algebraische Varietäten, wobei hier der Tangentialraum auch als Zariski-Tangentialraum bezeichnet wird. Im Unterschied zu Mannigfaltigkeiten können algebraische Varietäten aber Singularitäten haben, dort hat dann der Tangentialraum eine höhere Dimension als in glatten Punkten.
Eigenschaften
Wenn
eine offene Teilmenge des
ist, so kann man
in natürlicher Weise als eine
-Mannigfaltigkeit
betrachten. Alle Karten sind hierbei die Identität, und die Tangentialräume
werden mit dem
identifiziert.
Tangentialvektoren als Richtungsableitungen
Eine Sichtweise von Tangentialvektoren ist, sie als Richtungsableitungen zu
sehen. Für einen Vektor
im
definiert man die Richtungsableitung einer glatten Funktion
an einem Punkt
durch
Diese Abbildung ist offenbar eine Derivation. Tatsächlich ist sogar jede
Derivation von (
)
von dieser Form. So existiert eine Bijektion zwischen Vektoren (als
Tangentialvektor am Punkt
gedacht) und den Derivationen.
Da Tangentialvektoren an einer allgemeinen Mannigfaltigkeit als Derivationen
definiert werden können, ist es nur natürlich, sie auch als Richtungsableitungen
zu sehen. Konkret kann man für einen Tangentialvektor
von
an einem Punkt
(als Derivation gesehen) die Richtungsableitung in Richtung
für
Element von
wie folgt definieren:
Sehen wir
im Sinne der geometrischen Definition des Tangentialraums als
für eine Kurve
,
schreiben wir
.
Die Totalableitung einer Abbildung
Jede differenzierbare Abbildung
zwischen zwei differenzierbaren Mannigfaltigkeiten induziert eine lineare Abbildung
zwischen den entsprechenden Tangentialräumen, definiert durch
für die geometrische Definition des Tangentialraums und
für die Definition mittels Derivationen.
Die lineare Abbildung
wird mit Differential, Ableitung, Totalableitung oder auch
Tangentialabbildung bezeichnet. Auch hier variieren die Notationen stark.
Benutzt werden vor allem:
,
,
und
.
In einem gewissen Sinne ist die Totalableitung die beste lineare
Approximation von
in einer Umgebung von
.
In lokalen Koordinaten kann man die Totalableitung als Jacobische Matrix
darstellen.
Ist die Tangentialabbildung surjektiv, hat also die Jacobi-Matrix überall vollen Rang, so nennt man die zugrundeliegende Funktion Submersion; ist die Tangentialabbildung injektiv, Immersion.
Ein wichtiges Resultat bezüglich Tangentialabbildungen ist der Satz:
- Genau dann, wenn
ein lokaler Diffeomorphismus bei
in
ist, ist
ein linearer Isomorphismus.
Dies ist eine Verallgemeinerung des Satzes über inverse Funktionen auf Abbildungen zwischen Mannigfaltigkeiten.
Kotangentialraum
Da der Tangentialraum
am Punkt
der Mannigfaltigkeit die Struktur eines Vektorraums trägt, kann man den Dualraum von
ihm bilden. Dieser Raum wird Kotangentialraum genannt und gewöhnlicherweise mit
notiert. Der letzten Definition folgend ist der Raum also isomorph zu
.
Der Kotangentialraum spielt in der Differentialgeometrie ebenfalls eine sehr
wichtige Rolle. So kann man zum Beispiel das totale
Differential
von
als eine lineare Abbildung verstehen, welche jedem Tangentialvektor die Richtungsableitung
in seiner Richtung zuordnet. Das totale Differential
ist somit ein Element des Kotangentialraums
von
am Punkt
.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 25.10. 2020