Transformationssatz

Der Transformationssatz (auch Transformationsformel) beschreibt in der Analysis das Verhalten von Integralen unter Koordinatentransformationen. Er ist somit die Verallgemeinerung der Integration durch Substitution auf Funktionen höherer Dimensionen. Der Transformationssatz wird als Hilfsmittel bei der Berechnung von Integralen verwendet, wenn sich das Integral nach Überführung in ein anderes Koordinatensystem leichter berechnen lässt.

Formulierung des Satzes

Es sei \Omega \subset {\mathbb  {R}}^{d} eine offene Menge und \Phi \colon \Omega \to \Phi (\Omega )\subset {\mathbb  {R}}^{d} ein Diffeomorphismus. Dann ist die Funktion f auf \Phi (\Omega ) genau dann integrierbar, wenn die Funktion x\mapsto f(\Phi (x))\left|\det(D\Phi (x))\right| auf \Omega integrierbar ist. In diesem Fall gilt:

\int _{{\Phi (\Omega )}}f(y)\,{\mathrm  {d}}y=\int _{\Omega }f(\Phi (x))\left|\det(D\Phi (x))\right|{\mathrm  {d}}x\;.

Dabei ist D\Phi (x) die Jacobi-Matrix und \det(D\Phi (x)) die Funktionaldeterminante von \Phi .

Spezialfälle

Allgemeinere Form

Bei den Voraussetzungen des Transformationssatzes kann man die Bedingungen, dass die Abbildung \Phi ein Diffeomorphismus ist, abschwächen:

Beispiel

Um zu zeigen, dass das Integral über die Gauß-Glocke

{\frac  1{\sigma {\sqrt  {2\pi }}}}{\mathrm  e}^{{-{\frac  12}{\big (}{\frac  {x-\mu }\sigma }{\big )}^{2}}}

gleich 1 ist, genügt es, die Aussage

\left(\int _{{-\infty }}^{\infty }{\mathrm  e}^{{-x^{2}}}\,{\mathrm  d}x\right)^{2}=\int _{{-\infty }}^{\infty }\int _{{-\infty }}^{\infty }{\mathrm  e}^{{-x^{2}-y^{2}}}\,{\mathrm  d}x\,{\mathrm  d}y=\pi

zu beweisen. Da die Funktion f(x,y)={\mathrm  e}^{{-x^{2}-y^{2}}}={\mathrm  e}^{{-r^{2}}} rotationssymmetrisch ist, liegt die Berechnung des Integrals in Polarkoordinaten statt kartesischen Koordinaten nahe:

Es sei \Omega ={\mathbb  R}_{{>0}}\times (0,2\pi ) und

\Phi \colon \Omega \to {\mathbb  R}^{2},\quad (r,\varphi )\mapsto (r\cos \varphi ,r\sin \varphi ).

Dann ist die Funktionaldeterminante

\det D\Phi (r,\varphi )={\begin{vmatrix}\cos \varphi &-r\sin \varphi \\\sin \varphi &r\cos \varphi \end{vmatrix}}=r(\cos ^{2}\varphi +\sin ^{2}\varphi )=r.

Das Komplement von \Phi (\Omega )\subset {\mathbb  R}^{2} ist eine Nullmenge, mit f(x,y)={\mathrm  e}^{{-x^{2}-y^{2}}} ergibt sich also

\int _{{-\infty }}^{\infty }\int _{{-\infty }}^{\infty }{\mathrm  e}^{{-x^{2}-y^{2}}}\,{\mathrm  d}x\,{\mathrm  d}y
{}=\int _{{\Phi (\Omega )}}{\mathrm  e}^{{-x^{2}-y^{2}}}\,{\mathrm  d}x\,{\mathrm  d}y
{}=\int _{\Omega }{\mathrm  e}^{{-(r\cos \varphi )^{2}-(r\sin \varphi )^{2}}}\cdot \det D\Phi (r,\varphi )\,{\mathrm  d}r\,{\mathrm  d}\varphi
{}=\int _{\Omega }{\mathrm  e}^{{-r^{2}}}\cdot r\,{\mathrm  d}r\,{\mathrm  d}\varphi
{}=\int _{0}^{{2\pi }}\int _{0}^{\infty }r{\mathrm  e}^{{-r^{2}}}\,{\mathrm  d}r\,{\mathrm  d}\varphi
{}=\int _{0}^{{2\pi }}{\frac  12}\cdot {\mathrm  d}\varphi =\pi .\,

Die Auswertung des inneren Integrals in der vorletzten Zeile kann beispielsweise durch eine Substitution t=r^{2} begründet werden.

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung: Jena, den: 29.12. 2020