Schwingung

Als Schwingungen oder Oszillationen (lateinisch oscillare ‚schaukeln‘) werden wiederholte zeitliche Schwankungen von Zustandsgrößen eines Systems bezeichnet. Unter Schwankung ist dabei die Abweichung von einem Mittelwert zu verstehen. Schwingungen können in allen rückgekoppelten Systemen auftreten. Beispiele für Schwingungen sind in der Mechanik, in der Elektrotechnik, der Biologie, in der Wirtschaft und in vielen anderen Bereichen anzutreffen.

Gegenüberstellung elementarer Schwingungsformen. Die waagerechte Achse stellt die Zeit dar

Man unterscheidet:

Alle diese Eigenschaften können kombiniert sein.

Als Vibration werden periodische, mit Verformung verbundene mechanische Schwingungen eines Körpers bezeichnet. Eine Schwingung, die zur Informationsübermittlung dient, nennt man manchmal Signal, zum Beispiel elektrisches Signal. Die räumliche Ausbreitung einer Störung oder Schwingung ist eine Welle.

Harmonische Schwingung

Siehe auch: Harmonischer Oszillator
Schwingungsanimation nogif.svgHarmonischeSchw.gif
Darstellung einer harmonischen Schwingung.

Als harmonisch wird eine Schwingung bezeichnet, deren Verlauf durch eine Sinusfunktion beschrieben werden kann.

Die Grafik zeigt eine harmonische Schwingung mit der Auslenkung y(t), der Amplitude y_0 und der Periodendauer T.

Die Auslenkung y(t) zu einem Zeitpunkt t gibt den momentanen, die Amplitude den maximal möglichen Wert der Größe y an. Die Periodendauer oder die Schwingungsdauer ist die Zeit, die verstreicht, während ein schwingungsfähiges System genau eine Schwingungsperiode durchläuft, d. h. nach der es sich wieder im selben Schwingungszustand befindet. Der Kehrwert der Periodendauer T ist die Frequenz f, also: f = {1 \over T} \quad.
Statt f wird auch der griechische Buchstabe \nu (sprich: "nü") verwendet. Die Einheit der Frequenz ist das Hertz (1 Hz = 1 s−1).

Eine ungedämpfte Schwingung ist harmonisch, wenn die Rückstellgröße (die rückstellende Kraft) proportional zur Auslenkung beispielsweise eines Federpendels ist. Hierbei spricht man auch von einem harmonischen Oszillator oder einem linearen System, da die rückstellende Kraft sich linear mit der Auslenkung ändert: Verdoppelt sich diese, verdoppelt sich auch die rückstellende Kraft.

Eine solche Schwingung lässt sich beschreiben durch


y(t)=y_0\cdot\sin(2\pi f t+\varphi_0) \,

mit


y_0 = Amplitude und
\varphi_0 = Nullphasenwinkel der Schwingung.

Das 2\pi-fache der Frequenz, \omega = 2\pi \cdot f, ist die Kreisfrequenz der Schwingung. Durch Verwendung der Kreisfrequenz ergibt sich eine kompaktere Schreibweise:


y(t)=y_0\cdot\sin(\omega\,t+\varphi_0) \,

Linear gedämpfte Schwingung

Damped oscillation graph2.svgDamped spring.gif
Darstellung des zeitlichen Verlaufs der Größe x(t)
bei einer freien gedämpften Schwingung.

Makroskopische physikalische Systeme sind immer gedämpft. Da sie beispielsweise durch Reibung Energie an die Umgebung abgeben, nimmt die Amplitude ihrer Schwingung im Laufe der Zeit ab. Überlässt man ein solches System sich selbst (freie Schwingung), so führt dieses letztendlich zum „Stillstand“, wie aus dem zweiten Hauptsatz der Thermodynamik hervorgeht. Perpetua Mobilia sind also (siehe Energieerhaltungssatz) nicht möglich.

Stellt man die Bewegungsgleichung eines Federpendels mit einer zur Geschwindigkeit proportionalen Dämpfung auf, so ergibt sich folgende Differentialgleichung:


m \ddot x + d \dot x + k x = 0 \,

Dabei ist

m die Masse,
d die Dämpfungskonstante und
k die Federkonstante

(Für Drehschwingungen ist m durch das Trägheitsmoment J und x durch den Auslenkungswinkel \varphi zu ersetzen.)

Hierbei handelt es sich um eine homogene lineare gewöhnliche Differentialgleichung 2. Ordnung, die sich auf die allgemeine Form

\ddot x +2 \delta \dot x +  \omega_0^2 x = 0 \,

bringen lässt, wenn man die (positiven) Abkürzungen für die Abklingkonstante

\delta=\frac{d}{2m}

und die ungedämpfte Eigenkreisfrequenz

\omega_0=\sqrt{\frac{k}{m}}

einführt, deren Bedeutungen erst bei der Interpretation der Lösung deutlich werden.

Beim klassischen Weg zur Lösung einer solchen linearen homogenen Differentialgleichung (alternativ kann man Methoden der Operatorenrechnung benutzen) können mit Hilfe des Ansatzes

x(t)=e^{\lambda t} \,

mit gegebenenfalls komplexem Parameter \lambda zwei linear unabhängige Lösungen gefunden werden, welche ein Fundamentalsystem bilden. Eingesetzt in die Differentialgleichung ergibt sich:

(\lambda^2 +2 \delta \lambda +  \omega_0^2) \, e^{\lambda t} = 0.

In dieser Gleichung kann nur der Klammerausdruck gleich Null sein. Man erhält die sogenannte charakteristische Gleichung zur Bestimmung der Konstante \lambda:

\lambda^2 +2 \delta \lambda +  \omega_0^2 = 0

Das ist eine quadratische Gleichung, deren Diskriminante

\delta^2-\omega_0^2

bestimmt, ob sie zwei reelle Lösungen, zwei konjugiert komplexe Lösungen oder eine sogenannte Doppelwurzel besitzt. Deshalb ist eine Fallunterscheidung erforderlich.

Die Theorie der linearen Differentialgleichungen zeigt, dass die allgemeine Lösung der homogenen Differentialgleichung eine Linearkombination der beiden ermittelten Lösungen ist. Besitzt die charakteristische Gleichung zwei Lösungen (also ist die Diskriminante ungleich 0), dann lässt sich die allgemeine Lösung der Bewegungsgleichung wie folgt schreiben:

x(t) = X_1 e^{\lambda_1 t}+X_2 e^{\lambda_2 t}.

Die beiden (im Allgemeinen komplexen) Konstanten X_1 und X_2 repräsentieren die zwei noch vorhandenen Freiheitsgrade der allgemeinen Lösung. Durch die Festlegung von zwei Anfangsbedingungen (z.B. x(0) oder/und \dot x(0)) müssen die beiden Konstanten für einen konkreten Fall präzisiert werden.

Schwingfall

Eine Schwingung kann es nur geben, wenn die Verluste gering sind. Dann ist mit \delta<\omega_0 die Diskriminante negativ, der Wurzelausdruck imaginär und man erhält zwei konjugiert komplexe Lösungen:

\lambda_{1,2}=-\delta \pm i\sqrt {\omega_0^2-\delta^2}.

Mit der gedämpften Eigenkreisfrequenz:

\omega_d = \sqrt {\omega_0^2-\delta^2}.

ergibt sich kürzer:

\lambda_{1,2}=-\delta \pm i \omega_d.

Damit erhält man

x(t) = e^{-\delta t} \left(X_1 e^{i \omega_d t}+X_2 e^{-i \omega_d t}\right).

Mit Hilfe der Eulerschen Formeln lässt sich die Lösung der homogenen Differentialgleichung auch in trigonometrischer Form angeben. In der Theorie der linearen Differentialgleichungen mit konstanten Koeffizienten wird gezeigt, dass diese (im Gegensatz zur Exponentialform) rein reell und dadurch praktisch besser interpretierbar ist:

x(t)=e^{-\delta t}\left(X_3 \sin(\omega_d\, t)+X_4 \cos(\omega_d\, t)\right)\,

oder

x(t)=x_0\,e^{-\delta t}\cos(\omega_d\, t+ \varphi_0) \,

Auch hier sind jeweils die beiden Konstanten X_3 und X_4 bzw. x_0 und \varphi_0 durch die Anfangsbedingungen zu bestimmen. Insbesondere die letzte Form ist leicht als „gedämpfte Schwingung“ zu interpretieren.

Durch Vorgabe der zwei Anfangsbedingungen x(0) und \dot x(0) können die beiden Konstanten eliminiert werden. Ausgehend von der ersten trigonometrischen Form erhält man die konkrete von beiden Anfangsbedingungen abhängige Lösung

x(t)=e^{-\delta t}\left(\frac{\dot x(0)+\delta x(0)}{\omega_d}\cdot \sin(\omega_d\, t)+x(0)\cdot \cos(\omega_d\, t)\right)\,.

Wenn die Abklingkonstante \delta gleich Null ist, bleibt die Amplitude konstant. Die Schwingung ist ungedämpft mit der Kreisfrequenz \omega_d=\omega_0.

Aperiodischer Grenzfall

Die Grenze, ab der keine Schwingung mehr möglich ist, bildet der aperiodische Grenzfall (\delta=\omega_0 bzw. \omega_d = 0). Die Lösung enthält dann keine Sinusfunktion. Da nun \lambda_1 = \lambda_2 = -\delta gilt, muss eine zu e^{\lambda_1 t} unabhängige zweite Lösung auf andere Weise konstruiert werden. Es ergibt sich

x(t) = X_1 e^{-\delta t}+X_2 t e^{-\delta t}.

Kriechfall

Bei hoher Dämpfung, also für \delta>\omega_0 ergibt sich der Kriechfall, dessen Lösung sich aus zwei Exponentialfunktionen mit den beiden reellen \lambda_{1,2} zusammensetzt:

x(t) = X_1 e^{\lambda_1 t} + X_2 e^{\lambda_2 t}.

Frequenzspektrum einer Schwingung

Zusammenhang von Zeit- und Frequenzbereich
Siehe auch: Frequenzspektrum, Fourieranalyse und Fouriertransformation

Eine Schwingung lässt sich statt als zeitabhängige Änderung auch als Funktion im Frequenzraum betrachten. Die mathematische Transformation nennt man Fouriertransformation. Der Informationsgehalt bleibt dabei erhalten, daher lässt sich aus einem Frequenzspektrum durch Rücktransformation immer die entsprechende zeitabhängige Schwingung rekonstruieren. Hintergrund dieser Überlegung ist, dass sich jede Schwingung durch eine additive Überlagerung (Superposition) von harmonischen Schwingungen unterschiedlicher Frequenz darstellen lässt. Die Superposition zweier harmonischer Schwingungen nennt man Schwebung.

Anregung einer Schwingung

Freie Schwingungen

Freie Schwingungen führt ein schwingfähiges System aus, das – nach einer Störung/Auslenkung sich selbst überlassen – je nach Dämpfung oszillierend oder „kriechend“ in den Gleichgewichtszustand zurückkehrt (siehe oben). Die Frequenz der freien Schwingung ist die Eigenfrequenz des Schwingers. Bei Schwingungen mit mehreren Freiheitsgraden gibt es entsprechend viele Eigenfrequenzen.

Erzwungene Schwingungen

Hauptartikel: Erzwungene Schwingung

Erzwungene Schwingungen führt ein Schwinger aus, der durch zeitveränderliche äußere Einwirkung zum Schwingen angeregt (gezwungen) wird. Praktisch bedeutsam sind vor allem periodische Erregungen und darunter die harmonische, sinusförmige Erregung. Die Frequenz der periodischen Erregung wird als Erregerfrequenz bezeichnet. Es gibt auch mehrfrequente Erregungen oder Erregungen durch Zufallsprozesse.

Im Falle der harmonischen Erregung führt ein lineares System im Allgemeinen zwei Schwingungen gleichzeitig aus:

In der Technischen Mechanik sind die wichtigsten Erregungsmechanismen die Wegerregung, die Krafterregung und die Unwuchterregung (Vergrößerungsfunktion).

Die Amplitude der erzwungenen Schwingung nimmt im Falle der Resonanz ein Maximum an. Bei fehlender Dämpfung und Gleichheit von (einer) Erregerfrequenz und (einer) Eigenfrequenz wird die Amplitude unendlich. Mit wachsendem Dämpfungswert verschiebt sich die Resonanzstelle geringfügig und die Resonanzamplitude nimmt ab.

Selbsterregte Schwingungen

Schwingungssysteme, bei denen die Energiezufuhr durch ein geeignetes Steuerelement und den Schwingungsvorgang selbst gesteuert wird, führen selbsterregte Schwingungen aus und werden Oszillator genannt. In den Differentialgleichungen wirkt sich diese Erscheinung so aus, dass der Dämpfungswert Null wird. Ein typisches Beispiel im Bereich der Mechanik sind die Schwingungen der Saiten einer Violine. Diese werden dadurch verursacht, dass die Haftreibung zwischen Bogen und Saite größer ist als die Gleitreibung und die Gleitreibung mit wachsender Differenzgeschwindigkeit noch abnimmt. Weitere Beispiele sind das Tönen von Gläsern durch Reiben des Randes und elektronische Taktgeber (Oszillatorschaltung).

Selbsterregte Schwingungen nehmen in der Amplitude zu, bis die überproportional mit der Amplitude zunehmende Dämpfung die Energieeinkopplung kompensiert oder das schwingende System zerstört wird.

Parametererregte Schwingungen

Eine parametererregte Schwingung tritt dann auf, wenn sich Parameter des Schwingungssystems (Trägheitsgrößen, Dämpfungswerte oder Federkonstanten) periodisch ändern, z.B. beim Schaukeln.

Lineare und nichtlineare Schwingungen

Lineare Schwingungen sind dadurch gekennzeichnet, dass sie sich mit Differentialgleichungen beschreiben lassen, bei denen alle Abhängigkeiten von der schwingenden Größe und ihren zeitlichen Ableitungen linear sind. Bei nichtlinearen Schwingungen ist das nicht der Fall. Nichtlineare Schwingungen sind daher nicht streng sinusförmig. Von größerer praktischer Bedeutung ist, dass sich bei einem getriebenen Oszillator das Resonanzverhalten erzwungener Schwingungen ändert und die Amplituden selbsterregter Schwingungen beschränkt bleiben.

Nichtlineare Systeme sind häufig nicht integrabel. Das bedeutet, dass die Differentialgleichung(en) keine analytische Lösung besitzen. Das Schwingverhalten solcher Systeme wird daher meist mit numerischen Computersimulationen untersucht. Eines der ersten Experimente war das Fermi-Pasta-Ulam-Experiment, bei dem eine Saitenschwingung mit nichtlinearem Störterm untersucht wurde. Als Lösung solcher Systeme erhält man meist eine quasiperiodische oder chaotische Oszillation, wobei das Verhalten (quasiperiodisch oder chaotisch) häufig von der Energie der Schwingung abhängt. Ein nichtlineares System, das kein chaotisches Verhalten ermöglicht, ist der Van-der-Pol-Oszillator. Chaotisches Verhalten lässt sich beispielsweise bei einem Doppelpendel beobachten.

Schwingungen mit mehreren Freiheitsgraden

Diese Animation zeigt eine Lissajous-Figur, wie sie ein Oszilloskop, bei einem Frequenz-Verhältnis von annähernd (nicht genau!) 2:3 anzeigen würde (Amplituden-Verhältnis 1:1)

Schwingungen mit einem Freiheitsgrad sind solche, die sich mit einer schwingenden Größe vollständig beschreiben lassen. Ein Beispiel dafür sind Schwingungen des ebenen Fadenpendels. Lässt man beim Pendel räumliche Bewegungen zu wie bei einem foucaultschen Pendel, so handelt es sich bereits um einen Schwinger mit zwei Freiheitsgraden. Im Folgenden beschränken wir uns auf die Betrachtung kleiner Auslenkungen.

An diesem Beispiel lässt sich sehen, dass die Bezeichnung als Schwingung von den betrachteten Größen abhängen kann, also der Wahl der generalisierten Koordinaten. So lässt sich das Pendel auslenken, sodass die Schwingung in einer Ebene stattfindet. Gibt man dem Pendel zusätzlich noch eine Anfangsgeschwindigkeit senkrecht zur Auslenkungsrichtung, so kann man Ellipsenbahnen oder eine Kreisbewegung mit konstanter Winkelgeschwindigkeit beobachten.

Betrachtet man Auslenkungswinkel des Pendels von der Seite von zwei verschiedenen Richtungen, erhält man zwei harmonischen Schwingungen gleicher Periodendauer. Eine Überlagerung von zwei harmonischen Schwingungen nennt man Lissajous-Figur. Eine andere Möglichkeit ist, das Pendel von oben zu betrachten und Abstand zur Ruhelage sowie die Richtung der Auslenkung als fortlaufende Entfernung zum Anfangswinkel zu notieren. Im Fall einer Kreisbahn sind beide keine Schwingungen mehr.

Die Anzahl der Freiheitsgrade eines mechanischen Systems mit mehreren Massen, die sich unabhängig voneinander bewegen können, ist die Summe aller einzelnen Freiheitsgrade. Weitere Beispiele für Schwingungen mit mehreren Freiheitsgraden sind Torsionsschwingungen einer Kurbelwelle oder die Horizontalschwingungen eines mehrgeschossigen Bauwerkes unter Erdbebeneinfluss.

Manche Schwingungen eines Systems mit mehreren Freiheitsgraden lassen sich bei geeigneter Wahl der Koordinaten als mehrere unabhängige Schwingungen betrachten. Für eine Schwingung, die sich mittels Differentialgleichungen beschreiben lässt bedeutet dies, die Gleichungen der einzelnen Koordinaten zu entkoppeln. Sind die einzelnen Schwingungen periodisch, lassen sich dann aus den entkoppelten Differentialgleichungen die Eigenfrequenzen des Systems bestimmen. Lassen sich alle Eigenfrequenzen als ganzzahliges Vielfaches einer Konstanten schreiben, so ist auch die Schwingung des Gesamtsystems periodisch.

Bei nichtlinearen Schwingungssystemen ist eine Entkopplung der Differentialgleichungen in geschlossener Form meist nicht möglich. Es existieren jedoch Näherungsverfahren, die ausgehend von einer Linearisierung der Differentialgleichungen eine iterative Lösung ermöglichen.

Schwingungen eines Kontinuums

Schwingungen quadratischer Platten. Dargestellt sind die Knotenlinien von stehenden Wellen, auch Chladnische Klangfiguren genannt.
Siehe auch: Stehende Welle

Eine an einer Stelle in einem Kontinuum angeregte Schwingung breitet sich darin als Welle aus. An Grenzflächen, an denen das Ausbreitungsmedium wechselt, kann die Welle reflektiert werden. Innerhalb des schwingenden Körpers überlagern sich die ursprüngliche und die reflektierte Welle, so dass eine stehende Welle entsteht; Beispiele sind eine schwingende Saite eines Musikinstruments – geometrisch eindimensional – oder die zweidimensional schwingende Membran in einem Lautsprecher. Die stehende Welle lässt sich mathematisch durch unendlich viele gekoppelte Oszillatoren, also ein System mit unendlich vielen Freiheitsgraden beschreiben. Im Unterschied zu einem System mit endlich vielen Freiheitsgraden besitzt ein harmonischer kontinuierlicher Schwinger außer seiner Grundfrequenz unendlich viele Oberschwingungen. Eine solche Schwingung wird dann durch ihr Frequenzspektrum beschrieben.

Von praktischem Interesse in der Technik sind des Weiteren die Schwingungen von Stäben, Platten und Schalen. Ein einseitig eingespannter Balken besitzt viele Freiheitsgrade der Schwingung, die sich nicht nur durch ihre Resonanzfrequenzen, sondern auch durch die Art ihrer Bewegung unterscheiden.

Trenner
Basierend auf einem Artikel in: externer Link Wikipedia.de
 
Seitenende
Seite zurück
©  biancahoegel.de; 
Datum der letzten Änderung: Jena, den: 04.03. 2020