Phonon
Ein Phonon ist die elementare Anregung (Quant) des elastischen Feldes. In der Festkörperphysik beschreiben Phononen elementare bzw. kollektive Anregungen der Gitterschwingungen eines Festkörpers und können als bosonische Quasiteilchen verstanden werden.
Der Begriff Phonon (nach griechisch φωνή phonē, deutsch ‚Klang‘) wurde in Analogie zu den Schwingungsquanten des elektromagnetischen Feldes, den Photonen, gewählt und zum ersten Mal von J. I. Frenkel 1932 in seinem Buch Wave Mechanics, Elementary Theory verwendet.
Schwingungsmoden


In einem dreidimensionalen Kristall mit
Atomen in der primitiven
Basis existieren zu jedem mit der Kristallsymmetrie verträglichen Wellenvektor
mögliche Schwingungsmoden:
akustische (davon eine longitudinal
und zwei transversal)
und
optische:
- Akustische Phononen (auch als Schallquanten bezeichnet) sind die Quanten der Schallwellen, die sich durch das Kristallgitter fortpflanzen. Im Zentrum der Brillouin-Zone bewegen sich benachbarte Atome gleichsinnig.
- Dagegen bewegen sich bei optischen Phononen die Atome innerhalb der Basis gegeneinander. Die Bezeichnung „optisch“ beruht darauf, dass die Schwingungsfrequenzen optischer Phononen oft im Bereich des infraroten oder sichtbaren Lichts liegen.
Die Benennung optische Phononen erfolgt dabei unabhängig davon, ob die Phononen tatsächlich in dem Sinne optisch aktiv sind, dass Phononen mit einem Photon wechselwirken:[1] Wechselwirkungen mit Photonen sind dabei nicht nur, dass ein Phonon erzeugt werden kann, indem ein Photon absorbiert wird, oder dass umgekehrt ein Photon emittiert werden kann, indem ein Phonon vernichtet wird. Vielmehr gibt es auch Wechselwirkungen eines Photons mit zwei Phononen und eine Elektron-Photon-Phonon-Wechselwirkung. Optisch aktiv können Phononen nur dann sein, wenn innerhalb der Basis elektrische Polarisation vorliegt, was im Allgemeinen genau dann der Fall ist, wenn die Basis aus verschiedenen Atomen aufgebaut ist. Kristalle, die mit infraroten Photonen wechselwirken, nennt man infrarot-aktiv. Beispiele für solche Gitter sind Ionengitter, zum Beispiel in Natriumchloridkristallen.
Das Modell der Gitterschwingungen setzt eine kristalline Ordnung voraus. Auch amorphe Festkörper wie Gläser zeigen Schwingungen der Atome untereinander, man bezeichnet diese aber nicht als phononische Schwingungen. Für langwellige akustische Schwingungen ist der Einfluss der Unordnung gering.
Anregungsenergie und Statistik
Betrachtet man harmonische Gitterschwingungen im reziproken Raum, erhält
man entkoppelte Oszillationen im Impulsraum (Normalschwingungen).
Die Energiezustände
dieser Oszillationen sind die Niveaus eines harmonischen
Oszillators nach
.
Darin ist die Frequenz
abhängig von der Schwingungsmode
und dem Wellenvektor
,
siehe Dispersion.
Da Phononen zu den Bosonen
zählen, berechnet sich die mittlere Besetzungszahl
im thermischen
Gleichgewicht gemäß der Bose-Einstein-Verteilung
als
mit
: reduziertes Plancksches Wirkungsquantum
: Boltzmann-Konstante
: absolute Temperatur.
Die Besetzungsstatistik ist vom chemischen
Potential
unabhängig, weil die Teilchenzahl
der Phononen keine Erhaltungsgröße
ist.
Üblicherweise werden (wie oben) statistische Gemische von Zuständen mit bestimmter Phononenzahl (Fock-Zustände) verwendet. Wie Roy J. Glauber für Photonen 1963 zeigte, gibt es aber auch für Phononen so genannte kohärente Zustände mit unbestimmter Teilchenzahl, die sehr stark klassischen Gitterschwingungen ähneln. Während bei Fock-Zuständen der Erwartungswert der Auslenkung 0 ist, genügt er bei kohärenten Phononen-Zuständen der klassischen Zeitabhängigkeit von Gitterschwingungen.
Nachweis
Die Phononendispersion, d.h. der Zusammenhang zwischen Energie und Impuls der Gitterschwingungen, kann durch die inelastische Neutronenstreuung, die inelastische Röntgenstreuung sowie durch die hochauflösende Elektronenenergieverlustspektroskopie (HREELS) untersucht werden. Phononen mit kleinem Impuls, d.h. im Zentrum der Brillouin-Zone, können durch Raman-, Infrarot-Spektroskopie oder Brillouin-Streuung nachgewiesen werden. Die erste Phononen-Dispersionskurve wurde 1955 am Chalk River Reaktor von Bertram Brockhouse mit Neutronenstreuung an einem Aluminiumeinkristall aufgenommen.
Dispersion
Die Dispersionsrelation
gibt die Abhängigkeit der Energie bzw. Kreisfrequenz
vom Impuls bzw. Wellenzahl
an. Bei Phononen ergibt sich diese Beziehung aus der Newtonschen
Bewegungsgleichung. Dazu nimmt man an, dass sich die Atome in einem
periodischen Potential
befinden, in dem sie Schwingungen
ausführen.
Zwei benachbarte Atome haben einen Phasenunterschied von ,
wobei
der Abstand zweier benachbarter Atome in der Ruhelage ist. Ein Phasenunterschied
von
entspricht einem von Null; höhere Phasenunterschiede sind dementsprechend
äquivalent mit einem Wert zwischen
und
.
Aus Symmetriegründen betrachtet man das Intervall zwischen
und
.
Das entspricht
-Werten
aus der ersten Brillouin-Zone,
also
.
Dadurch hat man alle physikalisch relevanten Wellenzahlen abgedeckt.
Akustische Moden

Für das einfache Modell einer linearen Kette von Atomen, die durch Federn miteinander verbunden sind, lautet die Dispersionsrelation in erster Näherung
,
wobei C (in kg/s^2) die Federkonstante zwischen den zwei benachbarten Ebenen und m die Masse des Atoms ist.
Für niedrige Werte von
lautet der Ausdruck näherungsweise
.
ist die Schallgeschwindigkeit. An den Zonengrenzen gilt
Die Gruppengeschwindigkeit, also die Geschwindigkeit des Energietransports im Medium, ergibt sich zu
.
Am Zonenrand ist die Gruppengeschwindigkeit Null: Die Welle verhält sich wie eine stehende Welle.
Optische Moden
Optische Äste existieren nur bei einer mehratomigen Basis. Die Formel
beschreibt die Dispersionsrelation für das Modell einer linearen Kette mit zwei
unterschiedlichen Atomen, welche die Massen
und
haben. Die Kraftkonstante
bleibt konstant. Es ergibt sich
und damit näherungsweise
für den optischen Zweig.
Der optische Zweig ist normalerweise höherfrequenter als der akustische Zweig und nahezu dispersionslos. Der akustische Zweig entspricht in obiger Formel einem Minuszeichen vor der Wurzel.
Literatur
- Charles Kittel: Einführung in die Festkörperphysik. Oldenbourg, 2002
- Michael A. Stroscio, Mitra Dutta: Phonons in nanostructures. Cambridge Univ. Press, Cambridge 2005, ISBN 978-0-521-01805-0.
Anmerkungen
- ↑ Der Begriff optisch aktiver Phononen ist dabei auch vom Begriff der optischen Aktivität von durchsichtigen Materialien zu unterscheiden.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 27.06. 2024