Magnetresonanztomographie

Eine T1-MRT, die an einem gesunden Probanden mit Spin-Echo-T1-gewichteter Bildgebung durchgeführt wurde.
Gehirn-MRT
MRT-Aufnahme eines menschlichen Kniegelenks, in sagittaler Schichtung
Offener Magnetresonanz­tomograph an der Klinik für diagnostische Radiologie des Universitätsklinikums Magdeburg
cMRT[1]-Schnittbilder eines menschlichen Gehirns (Transversalebene), als Abfolge von unten nach oben dargestellt

Die Magnetresonanztomographie, abgekürzt MRT oder MR (als Tomographie von altgriechisch τομή tome, deutsch ‚Schnitt‘ und γράφειν graphein, deutsch ‚schreiben‘), ist ein bildgebendes Verfahren, das vor allem in der medizinischen Diagnostik zur Darstellung von Struktur und Funktion der Gewebe und Organe im Körper eingesetzt wird. Es basiert physikalisch auf den Prinzipien der Kernspinresonanz (englisch nuclear magnetic resonance, NMR), insbesondere der Feldgradienten-NMR, und wird daher auch als Kernspintomographie bezeichnet (umgangssprachlich gelegentlich zu Kernspin verkürzt). Die ebenfalls zu findende Abkürzung MRI stammt von der englischen Bezeichnung magnetic resonance imaging.

Mit der MRT können Schnittbilder des menschlichen (oder tierischen) Körpers erzeugt werden, die eine Beurteilung der Organe und vieler krankhafter Organveränderungen erlauben. Sie basiert auf – in einem Magnetresonanztomographiesystem (Kurzform: Kernspintomograph, MRT-Gerät) erzeugten – sehr starken Magnetfeldern sowie magnetischen Wechselfeldern im Radiofrequenzbereich, mit denen bestimmte Atomkerne (meist die Wasserstoffkerne/Protonen) im Körper resonant angeregt werden, wodurch in einem Empfängerstromkreis ein elektrisches Signal induziert wird. Da somit das zu beobachtende Objekt „selbst strahlt“, unterliegt die MRT nicht dem physikalischen Gesetz zum Auflösungsvermögen optischer Instrumente, nach dem die Wellenlänge der verwendeten Strahlung umso kleiner sein muss, je höher die geforderte Auflösung ist. In der MRT können mit Wellenlängen im Meterbereich (energiearme Radiowellen) Objektpunkte im Submillimeterbereich aufgelöst werden. Die Helligkeit unterschiedlicher Gewebetypen im Bild wird durch deren Relaxationszeiten und den Gehalt von Wasserstoff-Atomen (Protonendichte) bestimmt.[2] Welcher dieser Parameter den Bildkontrast dominiert, wird durch die Wahl der Pulssequenz beeinflusst.

Im Gerät wird keine belastende Röntgenstrahlung oder andere ionisierende Strahlung erzeugt oder genutzt. Allerdings sind die Wirkungen der magnetischen Wechselfelder auf lebendes Gewebe nicht vollständig erforscht.

Verfahren und Systeme

Zahlreiche spezielle MRT-Verfahren wurden entwickelt, um außer Lage und Form der Organe auch Informationen über ihre Mikrostruktur und Funktion (besonders ihre Durchblutung) darstellen zu können, zum Beispiel:

Nach der Bauform unterscheidet man geschlossene MRT-Systeme mit kurzem oder langem Tunnel und offene MRT-Systeme (oMRT) mit C-Arm oder seitlich geöffnetem Tunnel. Geschlossene Tunnelsysteme liefern vergleichsweise bessere Bilddaten, offene MRT-Systeme ermöglichen dagegen den Zugang zum Patienten unter MRT-Kontrolle.

Ein weiteres Unterscheidungskriterium ist die Art der Magnetfelderzeugung. Für schwache magnetische Felder bis ca. 0,5 Tesla Flussdichte werden Permanentmagnete oder konventionelle Elektromagnete verwendet, für stärkere Felder dagegen supraleitende Magnetspulen.

Historische Entwicklung

Die 1945/46 sowohl von Felix Bloch als auch von Edward M. Purcell beschriebene spezifische magnetische Resonanz von Atomkernen mit magnetischem Dipolmoment war die Grundlage für das seit den 1950er Jahren auch in der Medizin verwendete Verfahren der Magnetresonanzspektroskopie.[3] Die Magnetresonanztomographie wurde als bildgebende Methode von Paul C. Lauterbur im September 1971 erfunden; er veröffentlichte die Theorie zur Bildgebung im März 1973.[4][5] Die Hauptparameter, die zum Bildkontrast beitragen (Unterschiede in den Relaxationszeiten von Geweben), waren bereits gut 20 Jahre vorher von Erik Odeblad beschrieben worden.[6]

Lauterbur hatte zwei grundlegende Ideen, die eine Bildgebung auf der Grundlage der Kernspinresonanz erst möglich machten. Erstens gelang es ihm mit Feldgradienten-NMR, d. h. mit der Einführung von magnetischen Gradientenfeldern in das konventionelle NMR-Experiment, die NMR-Signale bestimmten räumlichen Bereichen einer ausgedehnten Probe zuzuordnen (Ortskodierung). Zweitens schlug er ein Verfahren vor, bei dem durch Rotation des ortskodierenden Magnetfeldgradienten in aufeinanderfolgenden Experimenten unterschiedliche Ortskodierungen (Projektionen) des Untersuchungsobjektes erzielt wurden, aus denen anschließend mit Hilfe der gefilterten Rückprojektion (englisch filtered backprojection) ein Abbild des Untersuchungsobjektes errechnet werden konnte. Sein 1973 publiziertes Ergebnis zeigt eine zweidimensionale Abbildung von zwei mit normalem Wasser gefüllten Röhrchen in einer Umgebung aus schwerem Wasser.

Für eine praktische Nutzung dieser Entdeckung waren auch spezielle apparative Neuerungen erforderlich. Die Firma Bruker in Karlsruhe hatte Anfang der 1960er Jahre in einer Gruppe um die Physiker Bertold Knüttel und Manfred Holz „quarzgesteuerte“ NMR-Impulsspektrometer[7] entwickelt, die z. B. von Peter Mansfield für grundlegende Experimente benutzt werden konnten. Mansfield entwickelte dann ab 1974 mathematische Verfahren, um die Signale schnell in Bildinformationen zu wandeln, sowie Techniken zur schichtselektiven Anregung. Weiterhin führte er 1977 die Verwendung extrem schneller Umschaltung der Gradienten ein (EPI = Echo Planar Imaging).[8] Dadurch wurde eine Bildgewinnung in deutlich unter einer Sekunde möglich („Schnappschuss-Technik“), die jedoch bis heute mit Abstrichen in der Bildqualität erkauft werden muss. Mansfield ist auch die Einführung magnetisch abgeschirmter Gradientenspulen zu verdanken. In seinen letzten aktiven Jahren suchte er nach Lösungen, um die erhebliche Lärmbelastung für die Patienten durch die extrem schnelle Gradientenumschaltung zu reduzieren.

Weitere für die breite klinische Nutzung der Magnetresonanztomographie (MRT) wichtige Beiträge stammen aus deutschen Forschungslaboren. In Freiburg entwickelten Jürgen Hennig und Mitarbeiter zu Anfang der 1980er Jahre eine Variante der Spin-Echo MRT, die heute unter den Abkürzungen RARE (Rapid Acquisition with Relaxation Enhancement)[9], FSE (Fast Spin Echo) oder TSE (Turbo Spin Echo) bekannt ist. Sie findet wegen ihrer Sensitivität in Bezug auf pathologische Gewebestrukturen und ihrer messtechnischen Effizienz allgemeine Verwendung. 1985 gelang Axel Haase, Jens Frahm und Dieter Matthaei in Göttingen mit der Erfindung des Schnellbild-Verfahrens FLASH[10] ein grundsätzlicher Durchbruch in der MRT. Die FLASH-Technik reduzierte die damaligen Messzeiten um bis zu zwei Größenordnungen (Faktor 100) ohne substanzielle Verluste an Bildqualität. Das Verfahren ermöglicht zudem ununterbrochene, sequentielle Messungen im dynamischen Gleichgewicht sowie völlig neue klinische Untersuchungen wie beispielsweise Aufnahmen aus dem Bauchraum bei angehaltenem Atem, dynamische Aufnahmen von mit dem EKG synchronisierten Herzfilmen, dreidimensionale Aufnahmen komplexer anatomischer Strukturen, Gefäßdarstellungen mit der MR-Angiographie und heute auch funktionelle Kartierungen des Cortex mit besonders hoher Auflösung. Damit war ab Mitte der 1980er Jahre der Weg frei für eine breite, vor allem klinische Anwendung der MRT in der medizinischen Diagnostik.

Umstritten ist der Beitrag von Raymond Damadian, der 1974 ein US-Patent zur Anwendung der NMR für die Krebsdiagnostik anmeldete[11] und 1976 damit ein Malignom bei einer Maus darstellen konnte. 1977 erstellte Damadian dann ein Kernspinbild eines menschlichen Thorax im Querschnitt.[12] Das Patent beschrieb zwar keine Methode zur Bildgebung, sondern nur eine Punktmessung, dennoch erstritt Damadian mit einem anderen Patent (Mehrschicht-Mehrwinkel-Messungen z. B. für MRT-Untersuchungen der Wirbelsäule) über 100 Millionen US-Dollar von den verschiedenen Herstellern von Magnetresonanztomographen. Sein ursprünglicher NMR-Scanner, der keine Bilder erzeugte, wurde klinisch nie eingesetzt, und auch seine damit angeblich gefundene Krebsnachweismethode ist nicht frei von Zweifeln. Sie beruht auf Differenzen in den NMR-Relaxationszeiten von gesundem Gewebe und Tumor-Gewebe. Diese von Damadian bereits 1971 publizierte Beobachtung (mittels der Magnetresonanzspektroskopie) wurde zwar grundsätzlich bestätigt, musste allerdings später dahin gehend relativiert werden, dass die Unterschiede nicht durchgehend zutreffen. Abweichende Relaxationszeiten des Gewebes sind weder notwendig noch hinreichend für das Vorhandensein von Tumorgewebe beim Probanden. Damadian wurde bei der Verleihung des Nobelpreises für die bildgebende Kernspinresonanz 2003 nicht berücksichtigt,[13] wogegen er öffentlich heftig protestierte.

Physik

Hauptartikel: Kernspinresonanz und Kernspinresonanzspektroskopie

Kurzfassung

Dieser Abschnitt beschreibt das Prinzip der MRT stark vereinfacht und nicht vollständig. Für eine präzisere Beschreibung siehe die nächsten Abschnitte.

Gyroskop in Bewegung (rot: Kreiselachse, grün: Achse äußere Kraft, blau: Achse Ergebnis)

Das Verfahren beruht darauf, dass die Atomkerne im untersuchten Gewebe durch eine Kombination von statischen und hochfrequenten magnetischen Feldern gezielt phasensynchron zu einer bestimmten Bewegung angeregt werden und dann ein messbares Signal in Form einer Wechselspannung abgeben, bis die Bewegung abgeklungen ist. Diese Bewegung heißt Larmorpräzession und ist mechanisch analog an einem Spielzeugkreisel zu beobachten, wenn seine Drehachse nicht senkrecht steht, sondern um die Senkrechte herum eine Präzession vollführt (s. Abb. rechts). Sowohl zur Anregung als auch zur Beobachtung des Signals ist eine Resonanzbedingung zu erfüllen, mit deren Hilfe es mittels inhomogener statischer Magnetfelder möglich ist, den Ort der präzedierenden Kerne zu ermitteln.

Einige Atomkerne (wie etwa die Wasserstoffkerne) in den Molekülen des zu untersuchenden Gewebes besitzen einen Eigendrehimpuls (Kernspin) und sind dadurch magnetisch. Diese Kerne erzeugen nach dem Anlegen eines starken statischen Magnetfeldes eine kleine longitudinale Magnetisierung in Richtung des statischen Feldes (Paramagnetismus). Durch ein kurzzeitig angelegtes zusätzliches hochfrequentes Wechselfeld im Radiofrequenzbereich lässt sich diese Magnetisierung aus der Richtung des statischen Feldes auslenken (kippen), also teilweise oder ganz (Sättigung) in eine transversale Magnetisierung umwandeln. Die transversale Magnetisierung beginnt sofort um die Feldrichtung des statischen Magnetfeldes zu präzedieren, d. h. die Magnetisierungsrichtung rotiert (siehe Abbildung zur Präzession). Diese Präzessionsbewegung der Gewebemagnetisierung induziert wie die Rotation des Magneten im Dynamo in einer Spule (Empfängerstromkreis) eine elektrische Spannung und kann damit nachgewiesen werden. Ihre Amplitude ist proportional zur transversalen Magnetisierung.

Nach Abschalten des hochfrequenten Wechselfeldes nimmt die transversale Magnetisierung (wieder) ab, die Spins richten sich also wieder parallel zum statischen Magnetfeld aus. Für diese sogenannte Relaxation benötigen sie eine charakteristische Abklingzeit. Diese ist von der chemischen Verbindung und der molekularen Umgebung abhängig, in der sich der präzedierende Wasserstoffkern befindet. Daher unterscheiden sich die verschiedenen Gewebearten charakteristisch in ihrem Signal, was zu verschiedenen Signalstärken (Helligkeiten) im resultierenden Bild führt.

Grundlagen

Präzessionsbewegung der Kerndrehachse

Die physikalische Grundlage der Magnetresonanztomographie (MRT) bildet die Kernspinresonanz (engl. nuclear magnetic resonance, NMR). Hier nutzt man die Tatsache, dass die Atomkerne von Wasserstoff (Protonen) einen Eigendrehimpuls (Spin) und damit verknüpft ein magnetisches Dipolmoment besitzen. Auch manche anderen Atomkerne haben Spin und erhalten dadurch ein magnetisches Moment. (Ein Atomkern kann vom Standpunkt der klassischen Physik aus vereinfacht als ein Kugelkreisel mit einem Drehimpuls und einem magnetischen Dipolmoment angesehen werden, wobei die Ursache seines Drehimpulses klassisch jedoch nicht korrekt beschrieben werden kann.)

Wird ein solcher Kern in ein statisches magnetisches Feld \vec{B}_0 gebracht, so ist seine Energie am niedrigsten, wenn das magnetische Dipolmoment zum Feld \vec{B}_0 parallel ausgerichtet ist. Auf alle anderen Atomkerne wirkt ein Drehmoment, das die Richtung des magnetischen Moments in die Richtung des Magnetfeldes zu drehen versucht. Wegen des Eigendrehimpulses des Atomkerns und der Drehimpulserhaltung resultiert daraus die Präzessionsbewegung, d. h. die Drehimpulsorientierung des Kerns dreht sich ohne Änderung des Anstellwinkels um die Richtung des angelegten Magnetfeldes.

Durch die thermische Energie der Kerne bei normalen Temperaturen sind die Dipolmomente fast vollständig zufällig (isotrop) ausgerichtet; es gibt nur einen sehr kleinen Überschuss von Atomkernen (entsprechend der Boltzmann-Verteilung), deren Dipolmomente in Richtung des statischen Magnetfeldes ausgerichtet sind. Nur dieser geringe Überschuss bewirkt die außen messbare Magnetisierung {\vec {M}} in Richtung des äußeren statischen Feldes (die Longitudinalmagnetisierung in Longitudinalrichtung).[14]

Die Präzessionsbewegung der Kernspins erfolgt mit der Larmorfrequenz. Sie hängt von der Stärke des äußeren Magnetfeldes und vom betrachteten Kern ab, für Protonen bei 1 Tesla ist sie 42,58 MHz, also im UKW-Radiowellenbereich. Ein hochfrequentes Zusatzfeld, das orthogonal zum statischen Magnetfeld \vec{B}_0, also in der Transversalebene, schwingt und dessen Frequenz mit der Larmorfrequenz in Resonanz ist, lenkt alle Kerne phasensynchron aus ihrer aktuellen Lage zum statischen Feld aus. Die makroskopische Magnetisierung wird aus der Richtung des statischen Feldes gekippt, es entsteht eine Transversalmagnetisierung, die bei richtiger Einwirkungsdauer des Wechselfelds maximal gerade gleich der ursprünglichen Longitudinalmagnetisierung sein kann (Sättigung).

Der magnetische Fluss des rotierenden Dipols induziert in der Messspule eine Spannung

In einer Messspule wird durch die rotierende Transversalmagnetisierung eine Wechselspannung induziert. Ihre Frequenz ist die Larmorfrequenz, die bei einem statischen Gradientenfeld vom Ort abhängt, ihre Amplitude gibt die Stärke der Transversalmagnetisierung an, die ihrerseits von der genauen Folge (Sequenz) von Pulsen, vom Ort und vom Gewebetyp abhängig ist.

Das Ziel der MR-Tomographie ist die Erzeugung von Schichtbildern (beliebiger Orientierung) der räumlichen Verteilung der Transversalmagnetisierung \vec{M}_T(x, y, z).

Spin-Gitter-Relaxation (Längsrelaxation T1)

Ist durch ein magnetisches Wechselfeld der richtigen Frequenz, Stärke und Dauer die Magnetisierung so aus der Longitudinalrichtung (z-Richtung) gekippt worden, dass sie in der xy-Ebene präzediert, hat die longitudinale Magnetisierung zunächst den Wert Null. Stellt man dann das Wechselfeld ab, beginnt sich der Gleichgewichtszustand mit ausschließlich longitudinaler Magnetisierung, also geringerer Energie, wieder aufzubauen. Ursache dieser Spin-Gitter-Relaxation ist die Einwirkung fluktuierender Störfelder auf die Momente der einzelnen Kerne, die durch benachbarte Atome hervorgerufen werden, die ihrerseits im thermischen Gleichgewicht mit der weiteren Umgebung stehen, die aus historischen Gründen als „Gitter“ bezeichnet wird. D.h., die Magnetisierung richtet sich wieder entlang des statischen Feldes B_{0} aus, die Energie geht von den Kernen über die Atome ins Gitter. Diese Ausrichtung erfolgt exponentiell:

M_{z}\left(t\right)=M_{0}\cdot\left(1-c\cdot e^{-\frac{t}{T_{1}}}\right),

wobei M_0 die Stärke der Magnetisierung in Richtung von B_{0} im Gleichgewichtszustand ist. Die Konstante c gibt an, in welchem Zustand außerhalb des Gleichgewichts sich das System zu Beginn des Relaxationsprozesses befindet (z. B. c=1: Sättigung, c=2: Inversion). Die Zeit, bis die z-Komponente ca. 63 % ihres Ausgangswertes wieder erreicht hat, nennt man Spin-Gitter-Relaxationszeit oder auch T_{1}-Zeit.

Die T_{1}-Zeiten in reinen, niedrigviskosen Flüssigkeiten wie z. B. Wasser liegen meist im Bereich von einigen Sekunden. Flüssigkeiten mit höherer Viskosität (z. B. Öle) oder Wasser in strukturierten Systemen wie z. B. Gelen, porösen Materialien oder Gewebe weisen im Allgemeinen kürzere T_{1}-Zeiten auf. In hoch geordneten Festkörpern werden hingegen sehr lange Relaxationszeiten gefunden, die eventuell im Bereich von Stunden liegen können. Solche Materialien spielen jedoch wegen der kurzen T_{2}-Zeiten in Festkörpern für die konventionelle Magnetresonanz-Tomographie keine Rolle. Typische Werte für T_{1} im menschlichen Gewebe liegen zwischen einigen Sekunden für Körperflüssigkeiten wie Blut oder Hirnwasser (Liquor) und ca. 100 ms für Körperfett (beispielsweise beträgt die T_{1}-Zeit von Liquor bei 1,5 Tesla etwa 4 Sekunden, die T_{1}-Zeit der grauen Hirnsubstanz ungefähr 1,2 Sekunden[15]).

Spin-Spin-Relaxation (Querrelaxationzeit T2)

Hauptartikel: Relaxation (NMR)

Die Quermagnetisierung eines Spin-Ensembles zerfällt nun, ähnlich wie die M_z-Komponente steigt, durch Wechselwirkung mit benachbarten Atomen. Hier ist es allerdings die sog. Spin-Spin-Wechselwirkung, die für die Dephasierung verantwortlich ist. Der Zerfall lässt sich wieder durch eine Exponentialfunktion darstellen, jedoch mit einer anderen Zeitkonstante T_{2}:

M_{T}\left(t\right)=M_{T}(0)\cdot e^{-\frac{t}{T_{2}}}.

Oft nimmt die Quermagnetisierung in der xy-Ebene viel schneller ab, als durch die Spin-Spin-Wechselwirkung erklärbar ist. Die Ursache liegt darin, dass bei einer MR-Aufnahme über ein Volumenelement gemittelt wird, in dem das äußere Magnetfeld nicht konstant (sondern inhomogen) ist. Nach Wegnahme des HF-Signals verschieben sich die Phasen der Präzessionsbewegung der Kerne untereinander, und die xy-Komponenten der einzelnen Kernspins laufen auseinander.

Messsequenz, Ortskodierung, Bildaufbau

Ein Gehirn in T1-, T2- und PD-Wichtung

Zum besseren Verständnis wird hier das Prinzip der grundlegenden (1950 von Erwin Hahn erfundenen) Spinecho-Sequenz kurz skizziert. Eine „Sequenz“ (auch „Pulssequenz“) ist in diesem Zusammenhang eine Abfolge von Hochfrequenz- und magnetischen Gradientenfeldern, die vielfach in jeder Sekunde in vorgegebener Reihenfolge ein- und ausgeschaltet werden.

Zu Beginn steht ein Hochfrequenzimpuls der passenden Frequenz (Larmor-Frequenz), der sogenannte 90°-Anregungsimpuls. Durch diesen wird die Magnetisierung um 90° quer zum äußeren Magnetfeld ausgelenkt. Sie beginnt um die ursprüngliche Achse zu kreisen. Wie bei einem Kreisel, welcher angestoßen wird, nennt man diese Bewegung Präzession.

Das dabei entstehende Hochfrequenzsignal kann außerhalb des Körpers gemessen werden. Es nimmt exponentiell ab, weil die Protonenspins aus dem „Takt“ geraten („dephasieren“) und sich zunehmend destruktiv überlagern. Die Zeit, nach der 63 % des Signals zerfallen sind, nennt man T_{2}-Relaxationszeit (Spin-Spin-Relaxation). Diese Zeit hängt von der chemischen Umgebung des Wasserstoffs ab; sie ist für jede Gewebsart unterschiedlich. Tumorgewebe hat z. B. meist eine längere T_{2}-Zeit als normales Muskelgewebe. Eine T_{2}-gewichtete Messung stellt den Tumor darum heller als seine Umgebung dar.

Durch einen geeigneten 180°-Rephasierungs-Hochfrequenzimpuls kann man bewirken, dass ein Teil der Dephasierung (T_2^*-Dephasierung durch zeitlich unveränderliche Magnetfeldinhomogenitäten) zum Zeitpunkt der Messung wieder rückgängig gemacht wird, so dass wieder mehr Spins in der gleichen Phase sind. Die Signalstärke hängt dann nicht von der T_2^*-Relaxationszeit ab, sondern nur noch von der T_{2}-Relaxationszeit, die auf nicht-reversiblen Effekten beruht. Abhängig von den Sequenz-Parametern kann das Signal darüber hinaus auch von der sogenannten T_{1}-Relaxationszeit (Spin-Gitter-Relaxation) abhängen, die ein Maß für die Geschwindigkeit ist, mit der sich die ursprüngliche Längsausrichtung der Spins zum äußeren Magnetfeld wieder einstellt. Die T_{1}-Zeit ist ebenfalls gewebespezifisch, aber in der Regel deutlich (5× bis 20×) länger als die T_{2}-Zeit. Die T_{1}-Zeit von Wasser beträgt z. B. 2,5 Sekunden. T_{1}-gewichtete Messsequenzen erlauben wegen des stärkeren Signals eine bessere Ortsauflösung, aber einen geringeren Gewebekontrast als T_{2}-gewichtete Bilder.

Um eine T_{2}-gewichtete Aufnahme zu erhalten, setzt man den Rephasierungsimpuls relativ spät, so dass die Spin-Spin-Relaxation Zeit hat, sich auszuwirken; man spricht von einer langen Echozeit TE. Auch der zeitliche Abstand bis zur nächsten Messung ist sehr lang, damit die Spin-Gitter-Relaxation in allen Geweben ebenfalls vollständig ablaufen kann und die Folgemessung überall wieder voll anregen kann. Man spricht von einer langen Repetitionszeit TR. Mit langer TE und langer TR bekommt man helles Signal nur von Geweben mit langer T_{2}-Zeit. Für eine T_{1}-Wichtung braucht man umgekehrt kurze TE und kurze TR, dann überwiegen die unterschiedlichen Spin-Gitter-Relaxationen verschiedener Gewebe im Bildkontrast. Eine Sequenz mit kurzer TE und langer TR erzeugt einen Kontrast, der sich nur nach der Konzentration der Protonen im Gewebe richtet, die praktisch der Anzahl der Wasserstoffatome entspricht. Diese sogenannten Proton density (PD)-gewichteten Aufnahmen haben einen flauen Kontrast, aber eine hohe Ortsauflösung. Es gibt zahlreiche Weiterentwicklungen dieser einfachen Spinecho-Sequenzen, etwa zur Beschleunigung, oder mit Unterdrückung des Fettgewebesignals. Eine klinische MRT-Untersuchung umfasst unterschiedlich gewichtete Bildserien und mehrere räumlichen Ebenen.

Um die Signale den einzelnen Volumenelementen (Voxeln) zuordnen zu können, wird mit linear ortsabhängigen Magnetfeldern (Gradientenfeldern) eine Ortskodierung erzeugt. Dabei wird ausgenutzt, dass für ein bestimmtes Teilchen die Larmorfrequenz von der magnetischen Flussdichte abhängt (je stärker der Feldanteil rechtwinklig zur Richtung des Teilchendrehimpulses, desto höher die Larmorfrequenz):

Die Messungen werden zeilenweise in eine Matrix („k-Raum“) eingetragen. Der k-Raum enthält in der Horizontalen also das Summensignal der horizontalen Ortsfrequenzen, und in der Vertikalen die Summe der vertikalen Ortsfrequenzen. Mit einer zweidimensionalen Fourier-Transformation werden die Beiträge der einzelnen Frequenzen getrennt, d. h. für jedes Voxel die Signalstärke ermittelt. Alle drei Gradienten zusammen bewirken eine Kodierung des Signals in drei Raumebenen. Das empfangene Signal gehört zu einer bestimmten Schicht des Körpers und enthält eine Kombination aus Frequenz- und Phasenkodierung, die der Computer mit einer inversen Fourier-Transformation in ein zweidimensionales Bild umrechnen kann.

Verwendete magnetische Flussdichten

Die magnetische Flussdichte B_{0} wirkt sich unmittelbar auf die Signalqualität der gemessenen Daten aus, da das Signal-Rausch-Verhältnis ungefähr proportional zur Flussdichte B_{0} ist. Deshalb gibt es seit den Anfängen der MRT einen Trend zu immer höheren Flussdichten, der den Einsatz tiefgekühlter supraleitender Spulen für die Erzeugung der Magnetfelder erfordert. Dadurch steigen die Kosten und der technische Aufwand bei höheren Flussdichten deutlich an. Besonders bei supraleitenden Spulen mit großen Öffnungen für die Untersuchung von Menschen kann die Homogenität des Magnetfelds abnehmen.

Niederfeldgeräte mit 0,1–1,0 T (Tesla) sind heute mit Permanentmagneten betrieben als Laborgeräte für technische oder Kleintieruntersuchungen im Einsatz. Bei Kryo-Elektromagneten in der Humanmedizin liegt die Flussdichte B_{0} für diagnostische Zwecke heute üblicherweise bei 1,5 T bis 3,0 T. Werden 3 T überschritten, dürfen die Patienten oder Probanden nur sehr langsam in den Bereich der supraleitenden Spule gefahren werden, da es infolge der entstehenden Wirbelströme im Gehirn sonst zu Blitzerscheinungen, Schwindel und Übelkeit kommen kann.

Etwa seit 2005 werden mit 7 Tesla höhere Flussdichten (Ultrahochfeld-Systeme) in der Humanmedizin erforscht. Seit 2017 sind diese Systeme für routinemäßige klinische Untersuchungen zugelassen.[16] Sie werden inzwischen in der medizinischen Praxis mehr und mehr genutzt. So können Erkrankungen des Gehirns, wie zum Beispiel die läsionale fokale Epilepsie sichtbar gemacht werden.[17]

An folgenden Institutionen wurden seit 2005 höhere Flussdichten als 3 Tesla eingeführt und erforscht:

Supraleitende Magnete bleiben bei einem Stromausfall stromführend und magnetisch, wodurch in einem Notfall (Gebäudebrand o. ä.) Rettungskräfte in Gefahr kommen können, indem ferromagnetische Ausrüstungsteile (Atemluftflaschen, …) in die Geräteöffnung gezogen werden.[37] Deswegen werden die Magnete bei der Auslösung eines Feueralarms automatisch gequencht, indem eine dafür vorgesehene Stelle der Spule durch Erwärmen normalleitend gemacht wird, woraufhin sich der Magnet über einen überbrückenden Lastwiderstand kontrolliert entlädt.

Experimentalsysteme

In der physikalischen, chemischen und biomedizinischen Forschung sind Hochfeldgeräte für Proben und Kleintiere mit bis zu 21 T üblich. Die Öffnung dieser Geräte ist mit einem Durchmesser von wenigen Zentimetern aber wesentlich kleiner als die der zuvor genannten Systeme. Mit solchen Hochfeldtomographen können z. B. Altersbestimmungen von Objekten durchgeführt werden, die chemisch oder radiologisch nicht möglich sind.

Bildbeurteilung

Die Signalstärke der Voxel wird in Grauwerten kodiert abgebildet. Da sie von zahlreichen Parametern abhängt (etwa der Magnetfeldstärke), gibt es keine Normwerte für das Signal bestimmter Gewebe und keine definierte Einheit, vergleichbar den Hounsfield-Units bei der Computertomographie. Die MR-Konsole zeigt nur arbiträre (willkürliche) Einheiten an, die diagnostisch nicht unmittelbar verwertbar sind. Die Bildinterpretation stützt sich stattdessen auf den Gesamtkontrast, die jeweilige Gewichtung (synonym Wichtung) der Messsequenz und die Signalunterschiede zwischen bekannten und unbekannten Geweben. Im Befund wird deshalb bei der Beschreibung einer Läsion nicht von „hell“ oder „dunkel“ gesprochen, sondern von hyperintens für signalreich, hell und von hypointens für signalarm, dunkel.

Je nach Gewichtung kommen die verschiedenen Gewebe in charakteristischer Intensitätsverteilung zur Darstellung:

In der voxelbasierten Morphometrie werden MR-Bilder algorithmisch weiterverarbeitet, um daraus objektive Parameter zu ermitteln und statistisch zu analysieren. Diese Verfahren kommen insbesondere zum Einsatz, um bei der Untersuchung des menschlichen Gehirns die Größe bestimmter Hirnstrukturen zu erfassen.

Eigenschaften

Vorteile der Magnetresonanztomographie

Schlagendes Herz
Sagittale MRT-Aufnahme eines menschlichen Kopfes
Dreidimensionales, mit MRT erstelltes Bild einer Kiwi

Ein Vorteil der MRT gegenüber anderen bildgebenden Verfahren ist der bessere Weichteilkontrast. Er resultiert aus der Verschiedenheit des Fett- und Wassergehaltes unterschiedlicher Gewebearten. Dabei kommt das Verfahren ohne schädliche ionisierende Strahlung aus. Eine weitere Verbesserung ergibt sich durch zwei Aufnahmeserien, ohne und mit Gabe von Kontrastmitteln, so werden z. B. durch eine intensivere Weißfärbung Entzündungsherde oder auch vitales Tumorgewebe besser erkannt.

Neue, schnellere Aufnahmeverfahren ermöglichen das Scannen einzelner Schnittbilder in Bruchteilen einer Sekunde und liefern auf diese Weise eine wirkliche Echtzeit-MRT, die die bisherigen Versuche in Anlehnung an die konventionelle Fluoroskopie ersetzen. Somit können beispielsweise Bewegungen von Organen dargestellt oder die Position medizinischer Instrumente während eines Eingriffs überwacht werden (interventionelle Radiologie). Zur Abbildung des schlagenden Herzens (Abbildung rechts) werden bisher mit einem EKG synchronisierte Messungen benutzt, wobei Daten aus mehreren Herzzyklen zu vollständigen Bildern kombiniert werden. Neuere Ansätze für die Echtzeit-MRT versprechen dagegen eine direkte Herzbildgebung ohne EKG-Synchronisation sowie bei freier Atmung mit einer zeitlichen Auflösung von bis zu 20 Millisekunden.

Wesentlich ist auch die fehlende Strahlenbelastung, weshalb diese Methode bei Untersuchungen von Säuglingen und Kindern sowie während der Schwangerschaft gegenüber der CT bevorzugt angewandt wird.

Nachteile der MRT

Warntafel bei MRT-Aufnahmen
Mobile MRT-Station nahe Glebefields Health Centre, Tipton, England

Artefakte

Im Vergleich zur Computertomographie treten Artefakte (Bildstörungen) häufiger auf und stören die Bildqualität meist mehr. Typische MRT-Artefakte sind:

Kontraindikationen

Liste von Abkürzungen gebräuchlicher MRT-Sequenzen

Abkürzung Erklärung Synonym
CE-FAST: Contrast Enhanced Fast Acquisition in the Steady State GE mit SE-Anteil durch Ausnutzung der Gleichgewichtsmagnetisierung PSIF, CE-GRASS
CISS: Constructive Interference in Steady State Zwei GE-Sequenzen, deren Einzelsignale konstruktiv addiert werden
CORE: Clinically Optimized Regional Exams
CSFSE: Contiguous Slice Fast-acquisition Spin Echo
CSI: Chemical Shift Imaging
DANTE: Delays Alternating with Nutations for tailored excitation Serie von Pulsen
DE-FLASH: Doppelecho – Fast Low Angle Shot
DEFAISE: Dual Echo Fast Acquisition Interleaved Spin Echo
DEFGR: Driven Equilibrium Fast Grass
DESS: Double Echo Steady State Doppel-GE-Sequenz, bei der die Signale zu einem addiert werden
EPI: Echo Planar Imaging Multiple GE nach einer Anregung; oft alle Rohdaten in einem Pulszug
EPSI: Echo Planar Spectroscopic Imaging
FADE: Fast Acquisition Double Echo
FAISE: Fast Acquisition Interleaved Spin Echo
FAST: Fast Acquired Steady state Technique GE mit Ausnutzung der Gleichgewichtsmagnetisierung FISP
FEER: Field Echo with Even echo Rephasing
FFE: Fast Field Echo GE mit Kleinwinkelanregung FISP
FISP: Fast Imaging with Steady state Precession GE mit Ausnutzung der Gleichgewichtsmagnetisierung
FLAIR: Fluid Attenuated Inversion Recovery SE mit vorgeschaltetem 180°-Puls, lange Inversionszeit zur Unterdrückung des Flüssigkeitssignals
FLAME: Fast Low Angle Multi-Echo
FLARE: Fast Low Angle with Relaxation Enhancement
FLASH: Fast Low Angle Shot GE mit Kleinwinkelanregung, üblicherweise mit HF-Spoiling T1-FFE, Spoiled GRASS, SPGR
GRASS: Gradient Refocused Acquisition in the Steady State GE mit Ausnutzung der Gleichgewichtsmagnetisierung FISP, FAST
GE: Gradienten-Echo GRE
HASTE: Half fourier-Acquired Single shot Turbo spin Echo Turbo-SE mit Half-Fourier-Akquisition, alle Rohdaten in einem Pulszug
IR: Inversion Recovery SE o.a. mit vorgeschaltetem 180°-Puls
IRABS: Inversion Recovery Fast Grass
LOTA: Long Term Averaging
MAST: Motion Artifact Suppression Technique
MPGR: slice-MultiPlexed Gradient Refocused acquisition with steady state
MP-RAGE: Magnetization Prepared Rapid Gradient Echo 3D-Variante von Turbo-FLASH
MSE: Modified Spin Echo
PCMHP: Phasenkontrast-Multi-Herzphasen
PSIF: Precision Study with Imaging Fast (umgedrehtes FISP) GE mit SE-Anteil durch Ausnutzung der Gleichgewichtsmagnetisierung CE-FAST, CE-GRASS
RARE: Rapid Acquisition with Relaxation Enhancement SE mit mehreren 180°-Pulsen, pro Echo eine Rohdatenzeile TSE, FSE
RASE: Rapid Acquisition Spin Echo
RASEE: Rapid Acquisition Spin Echo Enhanced
SE: Spin-Echo 90°–180°-Pulsfolge
SENSE: Sensitivity-Encoded
SMASH: Simultaneous Acquisition of Spatial Harmonics
SPGR: Spoiled Gradient Recalled Acquisition in the Steady State Gradienten-Echo mit Spoilern FLASH
STE: Stimulated Echo
STEAM: Stimulated Echo Acquisition Mode Pulsfolge mit drei 90°-Pulsen
SPIR: Spectral Presaturation with Inversion Recovery Fett-Unterdrückung
SR: Saturation Recovery Sequence SE o.a. mit vorgeschaltetem 90°-Puls
SSFP: Steady State Free Precession
STIR: Short-Tau Inversion Recovery
TFL: Turbo Flash
TGSE: Turbo Gradient Spin Echo Turbo-SE-Sequenz, bei der die SE von GE umgeben sind GRASE
TIRM: Turbo-Inversion Recovery-Magnitude Turbo-SE mit vorgeschaltetem 180°-Puls, Darstellung des Absolutsignals
TRUE-FISP: True Fast Imaging With Steady Precession GE mit Ausnutzung der Gleichgewichtsmagnetisierung, alle Gradienten sym. SSFP
TRUFI: True Fast Imaging With Steady Precession
Turbo-FLASH: Turbo Fast Low Angle Shot FLASH mit vorgeschaltetem 180°-Puls (IR) oder 90°-Puls (SR)
TSE: Turbo-Spin-Echo SE mit mehreren 180°-Pulsen, pro Echo eine Rohdatenzeile FSE, RARE
UTE: Ultra-short Echo Time Sehr kurze Echozeiten im Mikrosekundenbereich
UTSE: Ultra-fast Turbo Spin-Echo
VIBE: Volume Interpolated Breathhold Examination

Untersuchungsdauer bei einer Magnetresonanztomographie

Die Dauer einer MRT-Untersuchung hängt vom untersuchten Körperabschnitt, der klinischen Fragestellung und dem verwendeten Gerät ab. Die häufig durchgeführte Untersuchung des Kopfes dauert typischerweise 10–30 Minuten, eine Lendenwirbelsäulen-Untersuchung in der Regel etwa 20 Minuten. Je höher die gewünschte Detailauflösung, desto länger ist die zu veranschlagende Untersuchungszeit. Häufig werden zwei Aufnahmeserien erstellt, zuerst eine ohne Kontrastmittel, danach mit Kontrastmittel.

Die Untersuchungszeit muss bei der Auswahl des Diagnoseverfahrens berücksichtigt werden. Die Fähigkeit eines Patienten, während der erforderlichen Zeit still zu liegen, kann individuell und krankheitsabhängig eingeschränkt sein. Zur MRT-Untersuchung von Säuglingen und Kleinkindern ist gewöhnlich eine Sedierung oder Narkose erforderlich.

Neuere Entwicklungen versprechen, die Untersuchungszeit durch die parallele Aufnahme des MR-Signals mit zahlreichen Empfangsspulen deutlich zu verkürzen, sodass im Extremfall Aufnahmezeiten von unter einer Sekunde möglich sind.

Kosten und Statistik von MRT-Untersuchungen (Deutschland)

Die Preise für eine MRT-Untersuchung richten sich in Deutschland nach der Gebührenordnung für Ärzte und liegen je nach Organ und Aufwand der Untersuchung zwischen 140 und 1200 Euro.[48] Die Gesetzliche Krankenversicherung vergütet für ihre Versicherten nach dem Einheitlichen Bewertungsmaßstab, der deutlich niedrigere Preise (90–125 Euro) festlegt. Spezielle Verfahren (Herz-MRT, Ganzkörperuntersuchungen, Gefäßdarstellungen, Mamma-MRT) werden von den gesetzlichen Versicherungen nur zum Teil oder gar nicht bezahlt, z. B. weil der Nutzen der Untersuchung bislang nicht belegt ist oder weil die Nebenwirkungen in Form von Fehl- und Überdiagnosen zu hoch sind. Die Erstellungskosten liegen nach Angaben von Radiologen teilweise so hoch, dass die Geräte nur mit Mischkalkulationen und zusätzlichen Privatleistungsangeboten betrieben werden können.

2009 erhielten in Deutschland rund 5,89 Millionen Menschen mindestens eine Magnetresonanztomographie. Der stellvertretende Vorstandsvorsitzende der Barmer GEK, Rolf-Ulrich Schlenker, gab im Januar 2011 die geschätzten Jahresgesamtkosten für Computertomographie (CT) und MRT-Untersuchungen mit 1,76 Milliarden Euro an.[49]

Gesamtzahl (stationär + ambulant) der MRT-Untersuchungen und MRT-Geräte in Deutschland (Daten: OECD)
Jahr 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
MRT-Untersuchungen 6.003.944 6.260.293 6.894.000 7.353.000 7.945.000 8.624.000 8.874.000 9.270.000 10.018.000 10.637.000 11.322.130 11.812.067
MRT-Geräte 1.640 1.762 1.845 1.938 2.060 2.211 2.317 2.305 2.332 2.470 2.747 2.840

Kursive Werte stellen Schätzwerte dar.

Bildgalerie

Datenformat

Für die Speicherung und Archivierung der Ergebnisse medizinischer bildgebender Verfahren hat sich der DICOM-Standard weitgehend durchgesetzt. Oft wird dem Patienten nach der Untersuchung ein Datenträger (z. B. CD-ROM oder DVD-ROM) mit seinen eigenen Schnittbildern mitgegeben, die er dann an den behandelnden Arzt weiterreicht. Häufig werden diese Bilder nicht in ein gebräuchlicheres Grafikformat wie z. B. JPEG umgewandelt, so dass der Patient zum Betrachten ein gesondertes Anzeigeprogramm benötigt. Oft ist ein solches auf dem Datenträger enthalten, das neben der Darstellung der DICOM-Bilder unter Umständen auch Zusatzfunktionen wie Vermessungen oder Lupenwerkzeuge anbietet.

Literatur

Weblinks

Einzelnachweise

  1. Hochspringen nach: a b Extern cMRT | Befunddolmetscher.
  2. Extern Lernskript Grundlagen der Magnetresonanztomographie. (PDF; 1,2 MB) Diagnostische und Interventionelle Radiologie, Universitätsklinikum Gießen und Marburg, Standort Marburg.
  3. Cornelius Borck: Kernspintomographie. In: Werner E. Gerabek, Bernhard D. Haage, Gundolf Keil, Wolfgang Wegner (Hrsg.): Enzyklopädie Medizingeschichte. De Gruyter, Berlin/ New York 2005, ISBN 3-11-015714-4, S. 733.
  4. P. C. Lauterbur: Image Formation by Induced Local Interactions: Examples of Employing Nuclear Magnetic Resonance. In: Nature. Vol. 242, Nr. 5394, 1973, S. 190–191, doi: Extern 10.1038/242190a0, bibcode: Extern 1973Natur.242..190L (englisch).
  5. P. A. Rinck: The history of MRI. In: Magnetic Resonance in Medicine. 8. Auflage. 2014 (englisch, Extern magnetic-resonance.org).
  6. E. Odeblad, G. Lindström: Some preliminary observations on the proton magnetic resonance in biological samples. In: Acta Radiologica. Vol. 43, 1955, S. 469–476 (englisch).
  7. A. Geiger, M. Holz: Automation and Control in high power pulsed NMR. In: J. Phys. E: Sci.Instrum. 13, 1980, S. 697–707.
  8. P. Mansfield: Multi-planar image formation using NMR spin echoes. In: Journal of Physics C: Solid State Physics. Vol. 10, Nr. 3, 1976, S. L55-L58, doi: Extern 10.1088/0022-3719/10/3/004, bibcode: Extern 1977JPhC...10L..55M (englisch).
  9. J. Hennig, A. Nauerth, H. Friedburg: RARE imaging: A fast imaging method for clinical MR. In: Magnetic Resonance in Medicine. Vol. 3, Nr. 6, 1986, S. 823–833, doi: Extern 10.1002/mrm.1910030602 (englisch).
  10. A. Haase, J. Frahm, D. Matthaei, W. Hänicke, K. D. Merboldt: FLASH imaging. Rapid NMR imaging using low flip-angle pulses. In: Journal of Magnetic Resonance. Vol. 67, Nr. 2, 1986, S. 258–266, doi: Extern 10.1016/0022-2364(86)90433-6, bibcode: Extern 1986JMagR..67..258H (englisch).
  11. Cornelius Borck: Kernspintomographie. 2005, S. 733.
  12. Petra Kau: Untersuchungen über die Darstellbarkeit von Koronargefäßen mit der Magnetresonanztomographie, Peter Wegener-Verlag, Bonn 1993, S. 5
  13. Extern nobelprize.org.
  14. Lars G. Hanson: Is Quantum Mechanics necessary for understanding Magnetic Resonance? In: Concepts in Magnetic Resonance Part A, Band 32A, Nr. 5, 2008, S. 329–340, Extern doi:10.1002/cmr.a.20123.
  15. W. D. Rooney u. a.: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. In: Magn. Reson. Med. Band 57, 2007, S. 308–318. Extern PMID 17260370; Extern doi:10.1002/mrm.21122
  16. Extern Klinische Zulassung erstes 7-Tesla MRT ,.
  17. Extern 7 Tesla mr zieht in die praxis ein,.
  18. 7-Tesla-Ultrahochfeld-Kernspintomograph, Hirnforschung.
  19. Extern LIN weiht neuen Ultra-Hochfeld-Kleintierscanner ein.
  20. Extern AG Funktionelle Neuroanatomie am Leibniz-Institut für Neurobiolgie.
  21. Extern Willkommen im Erwin L. Hahn-Institut.
  22. Extern Institute for Biomedical Engineering (IBT) an der ETH Zürich.
  23. Extern Presseinformation von Philips zum 7-Tesla-MRT in Zürich (vom 19. Juli 2011 im Internet Archive).
  24. Extern Reise ins Gehirn – Das neue Magnetresonanzzentrum. Max-Planck-Institut, 2019.
  25. Extern Hochfeld-MRT an der Universität Wien.
  26. Millionen-Vertrag für 7-Tesla Magnetresonanztomographen unterzeichnets.
  27. Extern Ultrahochfeld-MRT-Arbeitsgruppe am DKFZ in Heidelberg (vom 20. Februar 2009 im Internet Archive).
  28. Extern Pressemitteilung des DKFZ in Heidelberg zum 7-Tesla-Ganzkörper-MRT.
  29. Extern Pressemitteilung des MDC in Berlin zum 7-Tesla-Ganzkörper-MRT
  30. Extern Hochfeld-MRT am MDC in Berlin
  31. Extern 9,4-Tesla-MR-PET am Forschungszentrum Jülich.
  32. Extern Pressemitteilung der FAU Erlangen-Nürnberg, abgerufen am 20. Oktober 2015.
  33. Pressemitteilung des Uniklinikums Erlangen.
  34. Extern Herzzentrum der Uniklinik Würzburg eröffnet.
  35. Extern DZNE Bonn Methoden.
  36. Extern Magnetresonanztomograph zieht zum Venusberg – 40 Tonnen am Haken.
  37. Extern Infoblatt supraleitende Magneten – MRT. (PDF) Branddirektion München, Berufsfeuerwehr, 2017,
  38. S. Yilmaz, M. Misirlioglu: The effect of 3 T MRI on microleakage of amalgam restorations. In: Dento maxillo facial radiology. Band 42, Nummer 8, 2013, S. 20130072. Extern doi:10.1259/dmfr.20130072. Extern PMID 23674614. Extern PMC 3756742 (freier Volltext).
  39. Extern Produkte | St. Jude Medical.
  40. S. Nospes, W. Mann, A. Keilmann: Magnetresonanztomographie bei Patienten mit magnetversorgten Hörimplantaten. In: Der Radiologe, 2013, S. 1026–1032, Extern doi:10.1007/s00117-013-2570-x.
  41. Price, David L. and De Wilde, Janet P. and Papadaki, Annie M. and Curran, Jane S. and Kitney, Richard I.: Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. In: Journal of Magnetic Resonance Imaging. Vol. 13, Nr. 2, 2001, S. 288–293, doi: Extern 10.1002/1522-2586(200102)13:2<288::AID-JMRI1041>3.0.CO;2-P (englisch).
  42. Bert Hansky: Spezielle MRT-fähige Elektroden. In: Deutsches Ärzteblatt Int. Band 109, Nr. 39, 28. September 2012, S. 643–644, doi: Extern 10.3238/arztebl.2012.0643b ( Extern aerzteblatt.de).
  43. Extern SureScan. ClinicalTrials.gov
  44. Extern ProMRI. ClinicalTrials.gov
  45. Nicola Siegmund-Schulze: MRT-Untersuchung in der Schwangerschaft: Kontrastmittel kann zu jeder Zeit das Kind schädigen Deutsches Ärzteblatt 2016, Jahrgang 113, Ausgabe 44 vom 9. November 2016, Seite 1987.
  46. L. L. Tsai, A. K. Grant u. a.: A Practical Guide to MR Imaging Safety: What Radiologists Need to Know. In: Radiographics: a review publication of the Radiological Society of North America, Inc. Band 35, Nummer 6, Oktober 2015, S. 1722–1737, Extern doi:10.1148/rg.2015150108, Extern PMID 26466181 (Review).
  47. Martina F. Callaghan, Clive Negus, Alexander P. Leff, Megan Creasey, Sheila Burns, Janice Glensman, David Bradbury, Elaine Williams, Nikolaus Weiskopf: Safety of Tattoos in Persons Undergoing MRI. In: New England Journal of Medicine. 380, 2019, S. 495, Extern doi:10.1056/NEJMc1811197.
  48. Extern Gebührenordnung für Ärzte, Punkt O III: Magnetresonanztomographie
  49. hil: Extern MRT laut Barmer Arztreport in Deutschland am häufigsten. In: aerzteblatt.de. 1. Februar 2011.
Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 08.01. 2025