Kreiselinstrument

Einfacher Kreisel

Ein Kreiselinstrument, auch Kreiselstabilisator oder Gyroskop (griechisch γύρος gyros, deutsch ‚Drehung‘ und σκοπεῖν skopein ‚sehen‘) genannt, ist ein rasch rotierender, symmetrischer Kreisel, der sich in einem beweglichen Lager dreht. Das Lager kann eine kardanische Aufhängung sein oder ein Rahmen in Form eines Käfigs (siehe Abbildung). Aufgrund der Drehimpulserhaltung weist der Kreisel ein hohes Beharrungsvermögen gegenüber Lageänderungen im Raum auf. Wird die Drehgeschwindigkeit zwischen Kreisel und Käfig gemessen, spricht man von einem Gyrometer. Gyroskope werden als Navigationsinstrumente sowie zur aktiven Lageregelung eingesetzt, insbesondere in der Luft- und Raumfahrt. Bei der Lageregelung von Raumflugkörpern wie Satelliten wird ausgenutzt, dass das Gesamtsystem aus Raumflugkörper und Gyroskop seinen Drehimpuls beibehält und somit durch Drehimpulsübertragung zwischen beiden die Lage gesteuert werden kann.

Aktuell wird der Begriff Kreisel oder Gyro in übertragender Weise für eine Vielzahl von Drehratensensoren verwendet, die keine Kreisel enthalten, aber den gleichen Zweck erfüllen wie ein tatsächliches Kreiselinstrument.

Geschichte

Das Gyroskop – heute werden die Begriffe Gyroskop und Kreiselkompass synonym verwendet – wurde 1810 vom Professor für Physik, Mathematik und Astronomie Johann Gottlieb Friedrich von Bohnenberger an der Universität Tübingen erfunden; ein Exemplar wurde erstmals 2004 von Alfons Renz, Privatdozent an der Biologischen Fakultät der Eberhard Karls Universität Tübingen, im Kepler-Gymnasium Tübingen wiederentdeckt. 1852 hat Léon Foucault das Gyroskop bis zur Konstruktion und Fertigung des Kreiselkompasses weiterentwickelt, wobei das erste Gyroskop von 1810 als Idee nicht unterscheidbar ist und wesentliche Grundlage zur Erfindung des Kreiselkompasses im Jahr 1852 war.

Physikalische Prinzipien

Ein Kreiselsystem lässt sich als abgeschlossenes System ansehen, dessen Drehimpuls konstant bleibt. Versucht eine äußere Kraft die Drehachse des Kreisels zu kippen, resultiert ein zur Kraft senkrechtes Drehmoment, dem sich der Drehimpuls nach der Regel vom gleichsinnigen Parallelismus anzugleichen strebt. Der Drehimpuls kippt senkrecht zur angreifenden Kraft. Die Drehachse ist über den Trägheitstensor an den Drehimpuls gekoppelt, weswegen die Kreiselachse dem Drehimpuls folgt und ihn dabei auf engem Kegel umläuft, siehe Drallstabilisierung. Der Effekt ist unter anderem vom Spielzeugkreisel bekannt, dessen Achse durch die ihn kippen wollende Schwerkraft entlang eines Kegelmantels präzediert. Der Öffnungswinkel des Kegels ist beim symmetrischen Kreisel umgekehrt proportional zum Quadrat der Drehzahl und des Verhältnisses des axialen zum äquatorialen Hauptträgheitsmoment des Kreisels.

Messprinzipien

Kreiselinstrument in Bewegung (rot: Kreiselachse, grün: Achse äußere Kraft, blau: Achse Ergebnis)

Daher sind am Kreisel folgende Messprinzipien möglich:

  1. Die Stabilität der Kreiselachse: Ein frei laufender, symmetrischer Kreisel hat das Bestreben, die Richtung seiner Drehachse im Inertialraum beizubehalten. – Ein Bezug der Lage ist gegeben
  2. Die Präzession: Versucht eine äußere Kraft, die Achsenrichtung eines laufenden Kreisels zu ändern, so folgt die Kreiselachse nicht der Angriffsrichtung dieser Kraft, sondern weicht rechtwinklig zu ihr im Sinne der Kreiseldrehung aus. – Äußere Kraft und Präzession stehen in direktem Zusammenhang, eine Lageänderung wird messbar

Die zwei Gesetzmäßigkeiten sind die Grundlage aller Kreiselinstrumente: Der 1. Satz ist eine Folge der Massenträgheit, der 2. Satz eine Folge des Drallsatzes (Satz vom Drehimpuls).

In einem abgeschlossenen System bleibt neben dem Gesamtimpuls auch der Drehimpuls erhalten. Stabilität und Präzession nehmen mit dem Drehimpuls des Kreisels zu.

Die Wirkung wird auch als richtungshaltender Kreisel bezeichnet; wichtige technische Anwendungen sind der künstliche Horizont und der Kurskreisel der Luftfahrt. In der Praxis bewirkt jede kleinste Unwucht ein langsames Auswandern der Kreiselachse (Kreiseldrift), was durch bestimmte Maßnahmen mehr oder weniger reduziert werden kann.

Die Präzession wird in noch breiterem Ausmaß angewandt: u.a. als Stellgröße bei Aufgaben der mechanischen Stabilisierung, beim Kreiselkompass der Nautik bzw. beim Vermessungskreisel (richtungssuchender bzw. nordsuchender Kreisel), oder für den Instrumentenflug beim Wendezeiger.

Technische Anwendungen

Weitverbreitet sind Kreiselinstrumente in der Verkehrstechnik, insbesondere zur Orientierung und zur Navigation.

Ein Gyroskop aus einem Flugzeug

Bei jedem Kreiselsystem würde aber über längere Zeiträume jede kleine Unwucht zu einer anwachsenden Kreiseldrift führen, die insbesondere im Flugwesen sehr störend wäre. Daher entwickelt man magnetgestützte Gyrosyn-Geräte, welche die Richtungsmessung auch über längere Zeit stabilisieren.

Lageregelung ist auch in anderen Bereichen von Bedeutung (wobei Gyroskop hier auch für Drehratensensoren stehen kann, welche nicht tatsächlich auf Kreiseln basieren):

Siehe auch

Literatur

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 19.01. 2023