Inertiales Navigationssystem

Ein Inertiales Navigationssystem (INS) bestimmt die eigene Position und Geschwindigkeit, ohne dass ein Bezug zur äußeren Umgebung erforderlich ist. Der Begriff Trägheitsnavigation ist synonym, da Bewegungen über die Massenträgheit bei Beschleunigungen gemessen werden. Die Abweichungen kumulieren mit der Zeit. In der Praxis koppelt man ein INS mit anderen Navigationssystemen. Beispielsweise liefert eine Kombination mit einem GPS absolute Positionsangaben im Sekundenabstand, während das INS die Zwischenwerte interpoliert.

Grundprinzip

Ausgangspunkt ist das Erfassen der Beschleunigung und der Drehrate mittels Inertialsensoren. Ist die Beschleunigung eines Massepunkts im Raum bekannt, erhält man durch Integration über die Zeit seine Geschwindigkeit und nach nochmaliger Integration seine durch die Geschwindigkeit verursachte Positionsänderung. Die Winkelgeschwindigkeit wiederum wird mit einem Drehratensensor gemessen. Der Verkippungswinkel ergibt sich aus der Integration der gemessenen Winkelgeschwindigkeiten über die Zeit in den drei Raumrichtungen. Insgesamt erfordert ein INS die Messung von 6 Größen: die Beschleunigung und die Winkelgeschwindigkeit, jeweils in drei Raumrichtungen. Diese Koppelnavigation führt zu einem Anwachsen des Fehlers mit der Zeit, der bei der Zweifachintegration zur Positionsbestimmung sogar quadratisch mit der Zeit anwächst.

Inertialsensoren können nicht als Punktkörper ausgeführt werden, solange die Orientierung der Sensoren im Raum unbekannt ist. Bei bekannten Anfangsbedingungen - Anfangsgeschwindigkeit und Ausgangspunkt - folgt daraus sein absoluter Ort.

Die Beschleunigung kann einerseits mittels Beschleunigungssensoren gemessen werden, andererseits durch vollkardanisch aufgehängte Kreisel, die eine stabile Ebene und Richtung besitzen. Mittels der Kreiseltechnologie sind auch die Drehung der Erde um die Sonne (0,041 deg/h) sowie die Erddrehung (15 deg/h) zu messen bzw. zu kompensieren.

Die einzelnen Messaufnehmer gehören zur Gruppe der Inertialsensoren und werden als Teil des INS häufig auch als Inertial Measurement Unit (IMU) bezeichnet. Da das ganze System einen eigenen Bezugspunkt festlegt, heißt es auch Inertial Reference System (IRS).

Einsatz

INS liefern nur für kurze Messperioden verlässliche Werte. Man kombiniert sie deshalb mit anderen Verfahren, beispielsweise Odometrie oder Satellitennavigation um höhere Genauigkeit über lange Zeiträume zu erreichen.

Bevor Satellitennavigation zur Positionskorrektur des INS zur Verfügung stand, wurde im Luftverkehr INS allein genutzt. Die Abweichung der INS-Geräte betrug dabei Anfang der 1970er Jahre maximal 10 Seemeilen in 5 Stunden Flug z.B. bei einer Ozeanüberquerung. Diese vergleichsweise hohe Genauigkeit des INS ermöglichte die Einsparung des Navigators in Langstreckenflugzeugen.

Auch der Gleichgewichtssinn bei Säugetieren ist wie ein INS aufgebaut, welches für Kurzzeitmessungen als Regelkreis zur Positionskorrektur dient. Sacculus und Utriculus im Gleichgewichtsorgan erfassen die Beschleunigung, während die Bogengänge die Drehbewegungen registrieren.

Geschichte

Das Prinzip der Inertialnavigation wurde bereits 1910 in einem Patent beschrieben. Bereits in den ersten Flüssigkeitsraketen - z.B. der deutschen A4 - wurden Trägheitsnavigationssysteme auf Basis von Gyroskopen eingesetzt. In den 1950er Jahren wurde Inertialnavigation vom amerikanischen Militär weiterentwickelt und kam im Atom-U-Boot Nautilus zum Einsatz. Heutzutage ist sie auch aus der Luft- und Raumfahrt nicht mehr wegzudenken, allerdings fast immer gekoppelt mit Satellitennavigation, was eine absolute Positionsbestimmung auf wenige Zentimeter genau in Echtzeit ermöglicht.

Speziell in der Raumfahrt wird die Inertialnavigation nur sparsam benutzt, da diese über die Zeit (beispielsweise durch die angesprochene Reibung) Messfehler aufweist und ein hoher Energiebedarf durch den Betrieb die Ressourcen der Raumfahrzeuge belastet. In bemannten Raumschiffen wird daher auch heute noch auf einen Sextanten zurückgegriffen, bei unbemannten Raumsonden und Satelliten werden Sternsensoren eingesetzt. So wurden beispielsweise bei den Mondflügen des Apollo-Programms zwischen Erde und Mond in jeder Richtung bis zu vier Kurskorrekturen vorgenommen. Nach optischer Positions- und Fluglagebestimmung wurde dann das Inertialmessgerät eingeschaltet und justiert, was etwa 45 Minuten bis eine Stunde Zeit in Anspruch nahm. Nach den Korrekturen wurde das Inertialmessgerät wieder ausgeschaltet.

Siehe auch


 
Seitenende
Seite zurück
©  biancahoegel.de;
Datum der letzten Änderung:  Jena, den: 10.08. 2019