Teileranzahlfunktion
Die Teileranzahlfunktion gibt an, wie viele Teiler eine natürliche Zahl hat; dabei werden die Eins und die Zahl selbst mitgezählt. Die Teileranzahlfunktion gehört zum mathematischen Teilgebiet der Zahlentheorie. Sie wird meist mit oder bezeichnet – da sie einen Spezialfall der Teilerfunktion darstellt, auch als .
Faktorisierung von | ||
---|---|---|
1 | 1 | 1 |
2 | 2 | 2 |
3 | 4 | 22 |
4 | 6 | 2 · 3 |
5 | 16 | 24 |
6 | 12 | 22 · 3 |
7 | 64 | 26 |
8 | 24 | 23 · 3 |
9 | 36 | 22 · 32 |
10 | 48 | 24 · 3 |
11 | 1.024 | 210 |
12 | 60 | 22 · 3 · 5 |
13 | 4.096 | 212 |
14 | 192 | 26 · 3 |
15 | 144 | 24 · 32 |
16 | 120 | 23 · 3 · 5 |
17 | 65.536 | 216 |
18 | 180 | 22 · 32 · 5 |
19 | 262.144 | 218 |
20 | 240 | 24 · 3 · 5 |
21 | 576 | 26 · 32 |
22 | 3.072 | 210 · 3 |
23 | 4.194.304 | 222 |
24 | 360 | 23 · 32 · 5 |
25 | 1.296 | 24 · 34 |
26 | 12.288 | 212 · 3 |
27 | 900 | 22 · 32 · 52 |
28 | 960 | 26 · 3 · 5 |
29 | 268.435.456 | 228 |
30 | 720 | 24 · 32 · 5 |
31 | 1.073.741.824 | 230 |
32 | 840 | 23 · 3 · 5 · 7 |
33 | 9.216 | 210 · 32 |
34 | 196.608 | 216 · 3 |
35 | 5.184 | 26 · 34 |
36 | 1.260 | 22 · 32 · 5 · 7 |
Definition
Für jede natürliche Zahl wird definiert:
Die ersten Werte sind:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Teiler von | 1 | 1, 2 | 1, 3 | 1, 2, 4 | 1, 5 | 1, 2, 3, 6 | 1, 7 | 1, 2, 4, 8 | 1, 3, 9 | 1, 2, 5, 10 | 1, 11 | 1, 2, 3, 4, 6, 12 |
1 | 2 | 2 | 3 | 2 | 4 | 2 | 4 | 3 | 4 | 2 | 6 |
Eigenschaften
- Hat die Zahl die Primfaktorzerlegung
-
- so gilt:
- Für teilerfremde Zahlen und gilt:
-
- Die Teileranzahlfunktion ist also eine multiplikative zahlentheoretische Funktion.
- Eine Zahl ist genau dann eine Primzahl, wenn gilt.
- Eine Zahl ist genau dann eine Quadratzahl, wenn ungerade ist.
- Die zur Teileranzahlfunktion gehörige Dirichlet-Reihe ist das Quadrat der riemannschen Zetafunktion:
-
- (für ).
Asymptotik
Im Mittel ist , präziser: Es gibt Konstanten , sodass
gilt. (Dabei sind „“ ein Landau-Symbol und die Euler-Mascheroni-Konstante.)
Als Heuristik kann die Erkenntnis dienen, dass eine Zahl ein Teiler von etwa Zahlen ist, damit wird die Summe auf der linken Seite in etwa zu
(Zum letzten Schritt siehe harmonische Reihe.)
Der Wert wurde bereits von P. G. L. Dirichlet bewiesen; die Suche nach besseren Werten ist deshalb auch als dirichletsches Teilerproblem bekannt.
Bessere Werte wurden von G. F. Woronoi (1903, ), J. van der Corput (1922, ) sowie M. N. Huxley () angegeben. Auf der anderen Seite zeigten G. H. Hardy und E. Landau, dass gelten muss. Die möglichen Werte für sind immer noch Forschungsgegenstand.
Verallgemeinerungen
Die Teilerfunktion ordnet jeder Zahl die Summe der -ten Potenzen ihrer Teiler zu:
Die Teilersumme ist der Spezialfall der Teilerfunktion für , und die Teileranzahlfunktion ist der Spezialfall der Teilerfunktion für :
Siehe auch
Basierend auf einem Artikel in: Wikipedia.de Seite zurück© biancahoegel.de
Datum der letzten Änderung: Jena, den: 29.08. 2022