Galliumarsenid

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) 
06 – Giftig oder sehr giftig 09 – Umweltgefährlich
Gefahr
H- und P-Sätze H:
  • Giftig bei Verschlucken.
  • Giftig bei Einatmen.
  • Sehr giftig für Wasserorganismen mit langfristiger Wirkung.
P:
  • Einatmen von Staub / Rauch / Gas / Nebel / Dampf / Aerosol vermeiden."
  • Bei Verschlucken: Sofort Giftinformationszentrum oder Arzt anrufen.
  • Bei Einatmen: An die frische Luft bringen und in einer Position ruhigstellen, die das Atmen erleichtert.
  • Besondere Behandlung (siehe … auf diesem Kennzeichnungsetikett). (Die vom Gesetzgeber offen gelassene Einfügung ist vom Inverkehrbringer zu ergänzen)
  • Unter Verschluss aufbewahren.
  • Inhalt / Behälter … zuführen. (Die vom Gesetzgeber offen gelassene Einfügung ist vom Inverkehrbringer zu ergänzen)
EU-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) 
Giftig Umweltgefährlich
Giftig Umwelt-
gefährlich
(T) (N)
R- und S-Sätze R:
  • Giftig beim Einatmen und Verschlucken.
  • Sehr giftig für Wasserorganismen, kann in Gewässern längerfristig schädliche Wirkungen haben.
S:
  • Unter Verschluss und für Kinder unzugänglich aufbewahren. (Text nur erforderlich bei Abgabe an nichtgewerbliche Endverbraucher)
  • Bei der Arbeit nicht essen, trinken oder rauchen
  • Bei Berührung mit der Haut sofort abwaschen mit viel ... (vom Hersteller anzugeben)
  • Bei Unfall oder Unwohlsein sofort Arzt hinzuziehen (wenn möglich, Etikett vorzeigen).
  • Dieses Produkt und sein Behälter sind als gefährlicher Abfall zu entsorgen.
  • Freisetzung in die Umwelt vermeiden. Besondere Anweisungen einholen/Sicherheitsdatenblatt zu Rate ziehen.
MAK nicht festgelegt, da cancerogen

Die binäre Verbindung Galliumarsenid (GaAs) ist ein Halbleiterwerkstoff, der sowohl halbleitend (mit Elementen aus den Gruppen II, IV oder VI des Periodensystems dotiert) als auch semiisolierend (undotiert) sein kann. Die auf diesem Substratmaterial aufbauenden Verbindungen und Epitaxie-Schichten werden zur Herstellung elektronischer Bauelemente benötigt, die bei Hochfrequenzanwendungen und für die Umwandlung elektrischer in optische Signale eingesetzt werden.

Kristallstruktur
Struktur von Galliumarsenid
__ Ga3+     __ As3−
Kristallsystem kubisch
Raumgruppe F\bar{4}3m
Gitterkonstanten a = 565,33 pm
Allgemeines
Name Galliumarsenid
Verhältnisformel GaAs
CAS-Nummer 1303-00-0
Kurzbeschreibung dunkelgrauer Feststoff
Eigenschaften
Molare Masse 144,64 g/mol
Aggregatzustand

fest

Dichte 5,31 g/cm3
Schmelzpunkt 1238 °C
Dampfdruck 984 hPa (1238 °C)
Löslichkeit reagiert mit Wasser
Thermodynamische Eigenschaften
ΔHf0 −71,0 kJ/mol

Kristallstruktur

Vereinfachte Bandstruktur von GaAs bei Raumtemperatur (300 K)

Galliumarsenid kristallisiert im kubischen Kristallsystem in der Raumgruppe F \bar 4 3m mit dem Gitterparameter a = 5,653 Å sowie vier Formeleinheiten pro Elementarzelle und ist isotyp zur Struktur der Zinkblende. Die Kristallstruktur besteht aus zwei ineinandergestellten kubisch-flächenzentrierten Gittern (kubisch-dichteste Kugelpackungen), die von Gallium- (Gruppe III) bzw. Arsen-Atomen (Gruppe V) aufgebaut werden und die um ein Viertel der Raumdiagonalen der kubischen Elementarzelle gegeneinander verschoben sind. Die Galliumatome besetzen damit die Hälfte der Tetraederlücken der Packung aus Arsenatomen und umgekehrt. Galliumarsenid ist ein intrinsischer direkter Halbleiter mit einer Bandlücke von 1,424 eV bei Raumtemperatur (300 K). Die Dichte der Verbindung beträgt 5,315 g/cm3, ihr Schmelzpunkt liegt bei 1238 °C.

Anwendungsgebiete

GaAs-Kristall

In der Grundlagenforschung und der Halbleiterindustrie wird GaAs vor allem im Rahmen des Materialsystems Aluminiumgalliumarsenid zur Herstellung von Halbleiter-Heterostrukturen verwendet. Bauteile aus Galliumarsenid weisen eine ca. zehnmal so hohe Transitfrequenz als ihre vergleichbaren Pendants aus Silicium auf. Sie weisen geringeres Rauschen auf und damit aufgebaute elektrische Schaltungen haben einen geringeren Energiebedarf als ihre direkten Äquivalente aus Silicium. Galliumarsenid ist ein Basismaterial für High-Electron-Mobility-Transistoren und Gunndioden, welche in der Hochfrequenztechnik eingesetzt werden. Daraus lassen sich rauscharme Hochfrequenzverstärker (LNA) aufbauen, welche unter anderem in der Satellitenkommunikation oder bei Radaranlagen Anwendung finden.

Darüber hinaus wird Galliumarsenid benutzt, um mit Hilfe von Lasern bzw. oberflächenemittierenden Lasern Informationen durch Glasfasernetze zu senden sowie Satelliten mit Energie aus hochspezialisierten Solarzellen (Photovoltaik) zu versorgen. Im Alltag kommt Galliumarsenid in Leucht- und Laserdioden der Farben Infrarot bis Gelb zur Anwendung.

Dennoch hat Galliumarsenid das Silicium als Massen-Halbleiter für eher alltägliche Anwendungen nicht verdrängen können. Die hauptsächlichen Gründe dafür sind die im Vergleich zu extrem häufigen Element Silicium wesentlich höheren Preise der deutlich selteneren Ausgangsstoffe Gallium und Arsen, sowie die aufwändigere Technologie zur Herstellung von Einkristallen. Dieser hohe technologische Aufwand begrenzt zugleich die Masse und den Durchmesser der Galliumarsenid-Einkristalle. Außerdem lassen sich in Silicium leichter isolierende Bereiche erzeugen – meist in Form von Siliciumdioxid –, als es im Galliumarsenid möglich ist. Da im GaAs wegen der im Vergleich zum Silicium deutlich geringeren Mobilität seiner leitenden Defektelektronen (den sogenannten "Löchern") auch keine guten p-Kanal-Feldeffekttransistoren realisiert werden können, ist die CMOS-Schaltungstechnik in GaAs nicht möglich; dadurch kehrt sich der energetische Vorteil von GaAs für viele Anwendungszwecke ins Gegenteil um.

Bei der Herstellung von GaAs kommt das giftige Arsen zum Einsatz. Problematisch sind auch die flüchtigen giftigen Zwischenprodukte während der Herstellung von GaAs, wie die beim Ätzen von GaAs entstehende Arsensäure.

Herstellung

Die Herstellung von Galliumarsenid-Einkristallen (Kristallzüchtung) erfolgt aus einer Schmelze der beiden Elemente Gallium und Arsen durch dampfdruckgesteuerte Tiegelziehverfahren, beispielsweise „Liquid Encapsulated Czochralski“- oder „Vertical Gradient Freeze“-Verfahren (LEC bzw. VGF-Verfahren). Stand der Technik sind Wafer mit einem Durchmesser von 150 mm, wobei die Möglichkeit zur Fertigung von Wafern mit 200 mm Durchmesser nachgewiesen wurde. GaAs- oder AlGaAs-Schichten können epitaktisch auf entsprechenden Substraten hergestellt werden, solche Schichten sind ebenfalls Einkristalle. Üblicherweise geschieht dies mit einer Rate von ca. 1 µm/h abhängig von dem Epitaxieverfahren.

Trenner
Basierend auf einem Artikel in Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de; 
Datum der letzten Änderung: Jena, den: 04.03. 2020