SQL

SQL (offizielle Aussprache [ɛskjuːˈɛl], oft aber auch [ˈsiːkwəl] nach dem Vorgänger SEQUEL; auf Deutsch auch häufig die deutsche Aussprache der Buchstaben) ist eine Datenbanksprache zur Definition von Datenstrukturen in relationalen Datenbanken sowie zum Bearbeiten (Einfügen, Verändern, Löschen) und Abfragen von darauf basierenden Datenbeständen.

Die Sprache basiert auf der relationalen Algebra, ihre Syntax ist relativ einfach aufgebaut und semantisch an die englische Umgangssprache angelehnt. Ein gemeinsames Gremium von ISO und IEC standardisiert die Sprache unter Mitwirkung nationaler Normungsgremien wie ANSI oder DIN. Durch den Einsatz von SQL strebt man die Unabhängigkeit der Anwendungen vom eingesetzten Datenbankmanagementsystem an.

Die Bezeichnung SQL wird im allgemeinen Sprachgebrauch als Abkürzung für „Structured Query Language“ (auf Deutsch: „Strukturierte Abfrage-Sprache“) aufgefasst, obwohl sie laut Standard ein eigenständiger Name ist. Die Bezeichnung leitet sich von dem Vorgänger SEQUEL ([ˈsiːkwəl], Structured English Query Language) ab, welche mit Beteiligung von Edgar F. Codd (IBM) in den 1970er Jahren von Donald D. Chamberlin und Raymond F. Boyce entworfen wurde. SEQUEL wurde später in SQL umbenannt, weil SEQUEL ein eingetragenes Warenzeichen der Hawker Siddeley Aircraft Company ist.

Sprachelemente und Beispiele

Bestandteile von SQL

SQL-Befehle lassen sich in vier Kategorien unterteilen (Zuordnung nach der Theorie der Datenbanksprachen in Klammern):

Die Bezeichnung SQL bezieht sich auf das englische Wort “query” (deutsch: „Abfrage“). Mit Abfragen werden die in einer Datenbank gespeicherten Daten abgerufen, also dem Benutzer oder einer Anwendersoftware zur Verfügung gestellt.

Das Ergebnis einer Abfrage sieht wiederum aus wie eine Tabelle und kann oft auch wie eine Tabelle angezeigt, bearbeitet und weiterverwendet werden.

Siehe auch: Datenbanktabelle

Die grundlegenden Befehle und Begriffe werden anhand des folgenden Beispiels erklärt:

ER-Diagramm: SQL-Beispiel
Relationen:
Student
MatrNr Name
26120 Fichte
25403 Jonas
27103 Fauler
hört
MatrNr VorlNr
25403 5001
26120 5001
26120 5045
Vorlesung
VorlNr Titel PersNr
5001 ET 15
5022 IT 12
5045 DB 12
Professor
PersNr Name
12 Wirth
15 Tesla
20 Urlauber

Einfache Abfrage

SELECT *
FROM Student;

listet alle Spalten und alle Zeilen der Tabelle Student auf.

Ergebnis:

MatrNr Name
26120 Fichte
25403 Jonas
27103 Fauler

Abfrage mit Spaltenauswahl

SELECT VorlNr, Titel
FROM Vorlesung;

listet die Spalten VorlNr und Titel aller Zeilen der Tabelle Vorlesung auf.

Ergebnis:

VorlNr Titel
5001 ET
5022 IT
5045 DB

Abfrage mit eindeutigen Werten

SELECT DISTINCT MatrNr
FROM hört;

listet nur unterschiedliche Einträge der Spalte MatrNr aus der Tabelle hört auf. Dies zeigt die Matrikelnummern aller Studenten, die mindestens eine Vorlesung hören, wobei mehrfach auftretende Matrikelnummern nur einmal ausgegeben werden.

Ergebnis:

MatrNr
25403
26120

Abfrage mit Umbenennung

SELECT MatrNr AS Matrikelnummer, Name
FROM Student;

listet die Spalten MatrNr und Name aller Zeilen der Tabelle Student auf. MatrNr wird beim Anzeigeergebnis als Matrikelnummer aufgeführt.

Ergebnis:

Matrikelnummer Name
26120 Fichte
25403 Jonas
27103 Fauler

Abfrage mit Filter

SELECT VorlNr, Titel
FROM Vorlesung
WHERE Titel = 'ET';

listet VorlNr und Titel aller derjenigen Zeilen der Tabelle Vorlesung auf, deren Titel 'ET' ist.

Die solchermaßen strukturierte, häufig verwendete Anweisung wird nach den Anfangsbuchstaben auch als „SFW-Block“ bezeichnet.

Ergebnis:

VorlNr Titel
5001 ET

Abfrage mit Filter nach Inhalt

SELECT Name
FROM Student
WHERE Name LIKE 'F%';

listet die Namen aller Studenten auf, deren Name mit F beginnt (im Beispiel: Fichte und Fauler).

LIKE kann mit verschiedenen Platzhaltern verwendet werden: _ steht für ein einzelnes beliebiges Zeichen, % steht für eine beliebige Zeichenfolge. Manche Datenbanksysteme bieten weitere solche Wildcard-Zeichen an, etwa für Zeichenmengen.

Ergebnis:

Name
Fichte
Fauler

Abfrage mit Filter und Sortierung

SELECT Vorname, Name, StrasseNr, Plz, Ort
FROM Student
WHERE Plz = '20095'
ORDER BY Name;

listet Vorname, Name, StrasseNr, Plz und Ort aller Studenten aus dem angegebenen Postleitzahlbereich sortiert nach Name auf.

Abfrage mit verknüpften Tabellen

SELECT Vorlesung.VorlNr, Vorlesung.Titel, Professor.PersNr, Professor.Name
FROM Professor, Vorlesung
WHERE Professor.PersNr = Vorlesung.PersNr;

Die Aufzählung hinter FROM legt die Datenquellen fest: an dieser Stelle können mit Hilfe sogenannter JOINs mehrere Tabellen miteinander verknüpft werden, so dass Daten aus verschiedenen Tabellen zusammengeführt und angezeigt werden.

In diesem Beispiel wird ein innerer natürlicher Verbund (natural inner join) verwendet: Alle Datensätze aus den Tabellen Professor und Vorlesung, die den gleichen Wert im Feld PersNr haben. Professoren ohne Vorlesung und Vorlesungen ohne Professor werden damit nicht angezeigt.

Dies ist äquivalent zu:

SELECT Vorlesung.VorlNr, Vorlesung.Titel, Professor.PersNr, Professor.Name
FROM Professor INNER JOIN Vorlesung
ON Professor.PersNr = Vorlesung.PersNr;

Vorsicht: Nicht alle Implementierungen verstehen die Schlüsselwörter „INNER“, „OUTER“ und „JOIN“.

Tabellen können nicht nur über Schlüsselfelder, sondern über beliebige Felder miteinander verknüpft werden, wie das folgende, fachlich unsinnige Beispiel zeigt:

SELECT Vorlesung.Titel, Professor.Name
FROM Professor, Vorlesung
WHERE Professor.Name <> Vorlesung.Titel

Ergebnis:

Titel Name
ET Tesla
ET Wirth
ET Urlauber
IT Tesla
IT Wirth
IT Urlauber
DB Tesla
DB Wirth
DB Urlauber

Linker äußerer Verbund

SELECT Vorlesung.VorlNr, Vorlesung.Titel, Professor.PersNr, Professor.Name
FROM Professor LEFT OUTER JOIN Vorlesung
ON Professor.PersNr = Vorlesung.PersNr;

ergibt alle Datensätze der Tabelle Professor und damit verknüpft alle Datensätze aus beiden Tabellen, die den gleichen Wert im Feld PersNr haben. Professoren ohne Vorlesung sind enthalten, Vorlesungen ohne Professor sind nicht enthalten.

Die folgende Abfrage liefert nur diejenigen Datensätze, zu denen kein passender Datensatz im linken äußeren Verbund existiert (alle Professoren, die keine Vorlesungen halten):

SELECT Professor.PersNr, Professor.Name
FROM Professor LEFT OUTER JOIN Vorlesung
ON Professor.PersNr = Vorlesung.PersNr
WHERE Vorlesung.PersNr IS NULL;

Das Gleiche kann mittels einer Unterabfrage erreicht werden:

SELECT Professor.PersNr, Professor.Name
FROM Professor
WHERE NOT EXISTS (SELECT * FROM Vorlesung WHERE PersNr = Professor.PersNr);

Gruppierung mit Aggregat-Funktionen

SELECT COUNT(Vorlesung.PersNr) AS Anzahl, Professor.PersNr, Professor.Name
FROM Professor LEFT OUTER JOIN Vorlesung
ON Professor.PersNr = Vorlesung.PersNr
GROUP BY Professor.Name, Professor.PersNr;

zählt die Anzahl der Vorlesungen pro Professor mit Hilfe der Aggregat-Funktion COUNT.

Bemerkung: COUNT(Professor.PersNr) oder COUNT(*) wären falsch (Nullwerte sollen nicht mitgezählt werden).

Zusammenfassung

Zusammengefasst sind die wichtigsten Elemente einer SQL-SELECT-Abfrage wie folgt anzugeben:

SELECT [DISTINCT] Auswahlliste [AS Spaltenalias]
FROM Quelle [ [AS] Tabellenalias]
[WHERE Where-Klausel]
[GROUP BY (Group-by-Attribut)+]
[HAVING Having-Klausel]
[ORDER BY (Sortierungsattribut [ASC|DESC])+];

Erläuterung:

Mengenoperatoren können auf mehrere SELECT-Abfragen angewandt werden, die gleich viele Attribute haben und bei denen die Datentypen der Attribute übereinstimmen:

Redundanz

Hauptartikel: Normalisierung (Datenbank)

Ein Grundsatz des Datenbankdesigns ist, dass in einer Datenbank keine Redundanzen auftreten sollen. Dies bedeutet, dass jede Information, also z.B. eine Adresse, nur genau einmal gespeichert wird.

Beispiel: in der Teilnehmerliste einer Vorlesung werden die Adressen nicht erneut erfasst, sondern nur indirekt über die Matrikelnummer. Um dennoch eine Teilnehmerliste mit Adressen zu erstellen, erfolgt eine SELECT-Abfrage, in der die Teilnehmertabelle mit der Studententabelle verknüpft wird (siehe oben: JOIN).

In manchen Fällen ist die Performance einer Datenbank besser, wenn sie nicht (vollständig) normalisiert wird. In diesem Falle werden in der Praxis oft Redundanzen bewusst in Kauf genommen, um zeitaufwändige und komplexe Joins zu verkürzen und so die Geschwindigkeit der Abfragen zu erhöhen. Man spricht auch von einer Denormalisierung einer Datenbank. Wann (und ob überhaupt) eine Denormalisierung sinnvoll ist, ist umstritten und hängt von den Umständen ab.

Schlüssel

Hauptartikel: Schlüssel (Datenbank)

Während die Informationen auf viele Tabellen verteilt werden müssen, um Redundanzen zu vermeiden, sind Schlüssel das Mittel, um diese verstreuten Informationen miteinander zu verknüpfen.

So hat in der Regel jeder Datensatz eine eindeutige Nummer oder ein anderes eindeutiges Feld, um ihn zu identifizieren. Diese Identifikationen werden als Schlüssel bezeichnet.

Wenn dieser Datensatz in anderen Zusammenhängen benötigt wird, wird lediglich sein Schlüssel angegeben. So werden bei der Erfassung von Vorlesungsteilnehmern nicht deren Namen und Adressen, sondern nur deren jeweilige Matrikelnummer erfasst, aus der sich alle weiteren Personalien ergeben.

So kann es sein, dass manche Datensätze nur aus Schlüsseln (meist Zahlen) bestehen, die erst in Verbindung mit Verknüpfungen verständlich werden. Der eigene Schlüssel des Datensatzes wird dabei als Primärschlüssel bezeichnet. Andere Schlüssel im Datensatz, die auf die Primärschlüssel anderer Tabellen verweisen, werden als Fremdschlüssel bezeichnet.

Schlüssel können auch aus einer Kombination mehrerer Angaben bestehen. Z.B. können die Teilnehmer einer Vorlesung durch die eindeutige Kombination von Vorlesungsnummer und Studentennummer identifiziert werden, so dass die doppelte Anmeldung eines Studenten zu einer Vorlesung ausgeschlossen ist.

Referenzielle Integrität

Hauptartikel: Referentielle Integrität

Referenzielle Integrität bedeutet, dass Datensätze, die von anderen Datensätzen verwendet werden, in der Datenbank auch vollständig vorhanden sind.

Im obigen Beispiel bedeutet dies, dass in der Teilnehmertabelle nur Matrikel-Nummern gespeichert sind, die es in der Studenten-Tabelle auch tatsächlich gibt.

Diese wichtige Funktionalität kann (und sollte) bereits von der Datenbank überwacht werden, so dass z.B.

Widersprüchlichkeit von Daten wird allgemein als Dateninkonsistenz bezeichnet. Diese besteht, wenn Daten bspw. die Integritätsbedingungen (z.B. Constraints oder Fremdschlüsselbeziehungen) nicht erfüllen.

Ursachen für Dateninkonsistenzen können Fehler bei der Analyse des Datenmodells, fehlende Normalisierung des ERM oder Fehler in der Programmierung sein.

Zum letzteren gehören die Lost-Update-Phänomene sowie die Verarbeitung von zwischenzeitlich veralteten Zwischenergebnissen. Dies tritt vor allem bei der Online-Verarbeitung auf, da dem Nutzer angezeigte Werte nicht in einer Transaktion gekapselt werden können.

Beispiel:
Transaktion A liest Wert x
Transaktion B verringert Wert x um 10
Transaktion A erhöht den gespeicherten Wert von x um eins und schreibt zurück
Ergebnis x' = x+1
Die Änderung von B ist verloren gegangen

SQL-Datentypen

Hauptartikel: Datentypen

In den oben vorgestellten Befehlen create table und alter table wird bei der Definition jeder Spalte angegeben, welchen Datentyp die Werte dieser Spalte annehmen können. Dazu liefert SQL eine ganze Reihe standardisierter Datentypen mit. Die einzelnen DBMS-Hersteller haben diese Liste jedoch um eine Unzahl weiterer Datentypen erweitert. Die wichtigsten Standarddatentypen sind:

integer
Ganze Zahl (positiv oder negativ), wobei je nach Zahl der verwendeten Bits Bezeichnungen wie smallint, tinyint oder bigint verwendet werden. Die jeweiligen Grenzen und die verwendete Terminologie sind vom Datenbanksystem definiert.
numeric (n, m) oder decimal (n, m)
Festkommazahl (positiv oder negativ) mit insgesamt maximal n Stellen, davon m Nachkommastellen. Wegen der hier erfolgenden Speicherung als Dezimalzahl ist eine besonders für Geldbeträge notwendige Genauigkeit gegeben.
float (m)
Gleitkommazahl (positiv oder negativ) mit maximal m Nachkommastellen.
real
Gleitkommazahl (positiv oder negativ). Die Genauigkeit für diesen Datentyp ist jeweils vom Datenbanksystem definiert.
double oder double precision
Gleitkommazahl (positiv oder negativ). Die Genauigkeit für diesen Datentyp ist jeweils vom Datenbanksystem definiert.
float und double
sind für technisch-wissenschaftliche Werte geeignet und umfassen auch die Exponentialdarstellung. Wegen der Speicherung im Binärformat sind sie aber für Geldbeträge nicht geeignet, weil sich beispielsweise der Wert 0,10 € (entspricht 10 Cent) nicht exakt abbilden lässt.
character (n) oder char (n)
Zeichenkette Text mit n Zeichen.
varchar (n) oder character varying (n)
Zeichenkette (also Text) von variabler Länge, aber maximal n druckbaren und/oder nicht druckbaren Zeichen. Die Variante varchar2 ist für Oracle spezifisch, ohne dass sie sich tatsächlich unterscheidet.
text
Zeichenkette (zumindest theoretisch) beliebiger Länge. In manchen Systemen synonym zu clob.
date
Datum (ohne Zeitangabe)
time
Zeitangabe (evtl. inklusive Zeitzone)
timestamp
Zeitstempel (umfasst Datum und Uhrzeit; evtl. inklusive Zeitzone), meistens mit Millisekundenauflösung, teilweise auch mikrosekundengenau
boolean
Boolesche Variable (kann die Werte true(wahr) oder false (falsch) oder NULL (unbekannt) annehmen). Dieser Datentyp ist laut SQL:2003 optional und nicht alle DBMS stellen diesen Datentyp bereit.
blob (n) oder binary large object (n)
Binärdaten von maximal n Bytes Länge.
clob (n) oder character large object (n)
Zeichenketten mit maximal n Zeichen Länge.

Wenn es die Tabellendefinition erlaubt, können Attribute auch den Wert NULL annehmen, wenn kein Wert bekannt ist oder aus anderen Gründen kein Wert gespeichert werden soll. Der NULL-Wert ist von allen anderen möglichen Werten des Datentyps verschieden.

Transaktion, Commit und Rollback

Hauptartikel: Transaktion (Informatik)

Eine Transaktion bezeichnet eine Menge von Datenbankänderungen, die zusammen ausgeführt werden (müssen). So ist beispielsweise die Buchung (als Transaktion) eines Geldbetrags durch zwei atomare Datenbankoperationen „Abbuchen des Geldbetrages von Konto A“ und „Buchung des Geldbetrages auf Konto B“ gekennzeichnet. Kann die vollständige Abarbeitung der elementaren Datenbankoperationen der Transaktion nicht durchgeführt werden (z.B. aufgrund eines Fehlers), müssen alle durchgeführten Änderungen an dem Datenbestand auf den Ausgangszustand zurückgesetzt werden.

Der Vorgang, der alle Änderungen einer Transaktion zurücksetzt, wird als Rollback bezeichnet. Der Begriff Commit bezeichnet das Ausführen einer Transaktion. Transaktionen sind eine Möglichkeit, die Konsistenz des Datenbestandes zu sichern. Im Beispiel der doppelten Kontenführung wird durch das Verhindern von ungültigen Teilbuchungen eine ausgeglichene Kontobilanz gewährleistet.

Datenbanken erlauben es zum Teil, bestimmte Befehle außerhalb einer Transaktion auszuführen. Darunter fällt insbesondere das Laden von Daten in Tabellen oder das Exportieren von Daten mittels Utilities. Manche DBMS erlauben das temporäre Abschalten der Transaktionslogik sowie einiger Kontrollen zur Erhöhung der Verarbeitungsgeschwindigkeit. Dies muss allerdings meist durch einen expliziten Befehl erzwungen werden, um ein versehentliches Ändern von Daten außerhalb einer Transaktion zu vermeiden. Solche Änderungen können, falls eine Datenbankwiederherstellung erforderlich ist, zu schweren Problemen oder gar Datenverlusten führen. Eine Transaktion wird mit der SQL-Anweisung Commit beendet. Alle Änderungen der Transaktion werden persistent gemacht, und das DBMS stellt durch geeignete (interne) Mittel (z.B. Logging) sicher, dass diese Änderungen nicht verloren gehen.

Mit dem Befehl Rollback wird eine Transaktion ebenfalls beendet, es werden jedoch alle Änderungen seit Beginn der Transaktion rückgängig gemacht. Das heißt, der Zustand des Systems (in Bezug auf die Änderungen der Transaktion) ist der gleiche wie vor der Transaktion.

Programmieren mit SQL

Programmierschnittstelle

Das ursprüngliche SQL war keine Turing-vollständige Programmiersprache, es ermöglichte also nicht die Realisierung von beliebigen Computerprogrammen. Mittlerweile lässt es sich mit anderen Programmiersprachen kombinieren, um eine Programmierung im engeren Sinne zu ermöglichen. Hierfür gibt es unterschiedliche Techniken.

Statisches und dynamisches SQL

Unabhängig von der verwendeten Programmiertechnik wird zwischen statischem und dynamischem SQL unterschieden.

Bei dynamischem SQL muss das Datenbanksystem die SQL-Anweisung zur Laufzeit des Programms interpretieren und den Zugriffspfad optimieren. Da dieser so genannte Parse-Vorgang Zeit in Anspruch nimmt, puffern viele Datenbanksysteme die bereits geparsten SQL-Anweisungen, um so, falls sie sich wiederholen, die Zeit für ein erneutes Parsen zu sparen. Bei statischem SQL kann schon bei der Übersetzung der Programme bzw. beim Binden der SQL-Anweisungen an eine Datenbank (so genanntes Bind der SQL-Befehle) der optimale Zugriffsweg bestimmt werden. Damit sind kürzestmögliche Laufzeiten der Anwendungsprogramme möglich, allerdings muss der Zugriffsweg aller betroffenen Programme neu bestimmt werden, wenn sich Voraussetzungen (z.B. Statistiken) ändern (Rebind). Die Bind-Phase ist heute vor allem im Großrechner-Umfeld bekannt, die meisten Datenbanksysteme optimieren hingegen zur Laufzeit.

Chronologie

Literatur

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung: Jena, den: 21.09. 2022