Hadamard-Mannigfaltigkeit

In der Differentialgeometrie, einem Teilgebiet der Mathematik, sind Hadamard-Mannigfaltigkeiten einfach zusammenhängende vollständige Riemannsche Mannigfaltigkeiten nichtpositiver Schnittkrümmung.

Definition

Eine Hadamard-Mannigfaltigkeit ist eine einfach zusammenhängende vollständige Riemannsche Mannigfaltigkeiten nichtpositiver Schnittkrümmung.

Eigenschaften

Hadamard-Mannigfaltigkeiten sind CAT(0)-Räume – das folgt aus dem Satz von Toponogow.

Hadamard-Mannigfaltigkeiten sind zusammenziehbar – das folgt aus dem Satz von Cartan-Hadamard.

Beispiele

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung: Jena, den: 09.10. 2020