Einheitengruppe
In der Mathematik ist die Einheitengruppe eines Rings mit Einselement die Menge aller multiplikativ invertierbaren Elemente. Sie ist mit der Ringmultiplikation eine Gruppe.
Die Einheitengruppen von (unitären) assoziativen Algebren können als Verallgemeinerung der allgemeinen linearen Gruppe angesehen werden.
Definition
Sei
ein Ring mit 1. Die Menge aller multiplikativ invertierbaren Elemente (Einheiten) von
bildet mit der Ringmultiplikation eine Gruppe.
Sie wird Einheitengruppe von
genannt. Man schreibt die Einheitengruppe meist als
oder als
.
Die Definition lässt sich auf Monoide
übertragen.
Eigenschaften und verwandte Begriffe
- Ein kommutativer Ring mit 1, dessen Einheitengruppe aus allen Elementen außer der Null besteht, ist bereits ein Körper.
- Ein kommutativer Ring mit 1 ist genau dann lokal, wenn das Komplement der Einheitengruppe ein Ideal ist.
Die Einheitengruppe eines Körpers
Die Einheitengruppe
(auch
)
eines Körpers
heißt multiplikative Gruppe. Sie ist isomorph zur linearen algebraischen
Gruppe
,
also Untergruppe der allgemeinen linearen Gruppe vom Grad 2.
Jede endliche
multiplikative Untergruppe eines kommutativen
Körpers
ist zyklisch
(s. Einheitswurzel).
Beispiele
- Die Einheitengruppe des Rings
der ganzen Zahlen besteht aus den beiden Elementen 1 und −1.
- Die Einheitengruppe des Rings
der rationalen Zahlen besteht aus allen rationalen Zahlen ungleich der Null,
ist also ein Körper.
- Die Einheitengruppe des Restklassenrings modulo 10 besteht aus den Elementen 1, 3, 7 und 9.
- Ist
eine Primzahl, so gibt es in
genau
Einheiten.
- Allgemein: Ist
, so gibt es in
genau
Einheiten. Dabei ist
die Euler-Funktion.
ist die Anzahl der natürlichen Zahlen, die nicht größer als
und teilerfremd zu
sind.
- Die Einheitengruppe des Matrizenrings
der
-Matrizen mit Koeffizienten in einem Körper
heißt allgemeine lineare Gruppe
.
und
sind Lie-Gruppen.
Literatur
- Andreas Bartholomé, Josef Rung, Hans Kern: Zahlentheorie für Einsteiger. Vieweg+Teubner, 7. Auflage, 2010, ISBN 978-3-8348-1213-1.
- Armin Leutbecher: Zahlentheorie. Eine Einführung in die Algebra. Springer, Berlin / Heidelberg / New York 1996, ISBN 3-540-58791-8.
![Trenner](/button/corpdivider.gif)
![Extern](/button/extern.png)
![Seitenende](/button/stonrul.gif)
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 02.02. 2022