Schwaches Gesetz der großen Zahlen
Das schwache Gesetz der großen Zahlen ist eine Aussage der Wahrscheinlichkeitstheorie, die sich mit dem Grenzwertverhalten von Folgen von Zufallsvariablen beschäftigt. Dabei werden Aussagen über die Konvergenz in Wahrscheinlichkeit der Mittelwerte der Zufallsvariablen getroffen. Das schwache Gesetz der großen Zahlen ist eng mit dem starken Gesetz der großen Zahlen verwandt, dieses verwendet jedoch einen anderen Konvergenzbegriff, die fast sichere Konvergenz. Beide zählen zu den Gesetzen der großen Zahlen und damit zu den Grenzwertsätzen der Stochastik.
Im Laufe der Zeit wurden die Voraussetzungen, unter denen das schwache Gesetz
der großen Zahlen gilt, immer weiter abgeschwächt, während dementsprechend die
zum Beweis nötigen Mittel immer fortgeschrittener wurden. Einige der
geschichtlich bedeutsamen Formulierungen des schwachen Gesetzes der großen
Zahlen tragen auch Eigennamen wie beispielsweise Bernoullis Gesetz der großen
Zahlen (nach Jakob
I Bernoulli), Tschebyscheffs schwaches Gesetz der großen Zahlen (nach
Pafnuti
Lwowitsch Tschebyschow) oder Khinchins schwaches Gesetz der großen
Zahlen (nach Alexander
Jakowlewitsch Chintschin). Bisweilen finden sich noch Bezeichnungen wie
-Version
oder
-Version
des schwachen Gesetzes der großen Zahlen für Formulierungen, die lediglich die
Existenz der Varianz
oder des Erwartungswertes
als Voraussetzung benötigen.
Formulierung
Gegeben sei eine Folge von Zufallsvariablen ,
für deren Erwartungswert gelte
für alle
.
Man sagt, die Folge genügt dem schwachen Gesetz der großen Zahlen, wenn die
Folge
der zentrierten Mittelwerte in Wahrscheinlichkeit gegen 0 konvergiert, das heißt es gilt
für alle .
Interpretation und Unterschied zum starken Gesetz der großen Zahlen
Aus dem starken Gesetz der großen Zahlen folgt immer das schwache Gesetz der großen Zahlen.
Gültigkeit
Im Folgenden sind verschiedene Voraussetzungen, unter denen das schwache Gesetz der großen Zahlen gilt, aufgelistet. Dabei steht die schwächste und auch speziellste Aussage ganz oben, die stärkste und allgemeinste ganz unten.
Bernoullis Gesetz der großen Zahlen
Sind
unabhängig
identisch Bernoulli-verteilte
Zufallsvariablen zum Parameter
,
das heißt
,
so genügt
dem schwachen Gesetz der großen Zahlen und der Mittelwert konvergiert in
Wahrscheinlichkeit gegen den Parameter
.
Diese Aussage geht auf Jakob I Bernoulli zurück, wurde jedoch erst 1713 posthum in der von seinem Neffen Nikolaus I Bernoulli herausgegebenen Ars conjectandi veröffentlicht.
Tschebyscheffs schwaches Gesetz der großen Zahlen
Sind
unabhängig
identisch verteilte Zufallsvariablen mit endlichem Erwartungswert und
endlicher Varianz,
so genügt
dem schwachen Gesetz der großen Zahlen.
Diese Aussage geht auf Pafnuti Lwowitsch Tschebyschow (alternative Transkriptionen aus dem Russischen Tschebyscheff oder Chebyshev) zurück, der sie 1866 bewies.
L2-Version des schwachen Gesetzes der großen Zahlen
Sind
eine Folge von Zufallsvariablen, für die gilt:
- Die
sind paarweise unkorreliert, das heißt es ist
für
.
- Für die Folge der Varianzen der
gilt
.
Dann genügt
dem schwachen Gesetz der großen Zahlen.
Dabei ist die Bedingung an die Varianzen beispielsweise erfüllt, wenn die
Folge der Varianzen beschränkt ist, es ist also .
Diese Aussage ist aus zweierlei Gründen eine echte Verbesserung gegenüber dem schwachen Gesetz der großen Zahlen von Tschebyscheff:
- Paarweise Unkorreliertheit ist eine schwächere Forderung als Unabhängigkeit, da aus Unabhängigkeit immer paarweise Unkorreliertheit folgt, der Umkehrschluss aber im Allgemeinen nicht gilt.
- Die Zufallsvariablen müssen auch nicht mehr dieselbe Verteilung besitzen, es genügt die obige Forderung an die Varianzen.
Die Benennung in L2-Version kommt aus der Forderung, dass die Varianzen endlich sein sollen, dies entspricht in maßtheoretischer Sprechweise der Forderung, dass die Zufallsvariable (messbare Funktion) im Raum der quadratintegrierbaren Funktionen liegen soll.
Khinchins schwaches Gesetz der großen Zahlen
Sind
unabhängig
identisch verteilte Zufallsvariablen mit endlichem Erwartungswert, so genügt
die Folge dem schwachen Gesetz der großen Zahlen.
Dieser Satz wurde 1929 von Alexander Jakowlewitsch Chintschin (alternative Transkriptionen aus dem Russischen Khintchine oder Khinchin) bewiesen und zeichnet sich dadurch aus, dass er die erste Formulierung eines schwachen Gesetzes der großen Zahlen liefert, die ohne die Voraussetzung einer endlichen Varianz auskommt.
L1-Version des schwachen Gesetzes der großen Zahlen
Sei
eine Folge von paarweise unabhängigen Zufallsvariablen, die identisch verteilt
sind und einen endlichen Erwartungswert besitzen. Dann genügt
dem schwachen Gesetz der großen Zahlen.
Diese Aussage ist eine echte Verbesserung gegenüber dem schwachen Gesetz der großen Zahlen von Khinchin, da aus paarweiser Unabhängigkeit von Zufallsvariablen nicht die Unabhängigkeit der gesamten Folge von Zufallsvariablen folgt.
Beweisskizzen
Als Abkürzungen seien vereinbart
Versionen mit endlicher Varianz
Die Beweise der Versionen des schwachen Gesetzes der großen Zahlen, welche die Endlichkeit der Varianz als Voraussetzung benötigen, beruhen im Kern auf der Tschebyscheff-Ungleichung
,
hier für die Zufallsvariable
formuliert.
Der Beweis von Bernoullis Gesetz der großen Zahlen ist somit elementar
möglich: Gilt für ,
so ist
binomialverteilt,
also
.
Damit ist
.
Wendet man nun die Tschebyscheff-Ungleichung auf die Zufallsvariable
an, so folgt
für
und alle
.
Analog folgt der Beweis von Tschebyscheffs schwachem Gesetz der großen
Zahlen. Ist
und
,
ist aufgrund der Linearität des Erwartungswertes
.
Die Identität
folgt aus der Gleichung
von Bienaymé und der Unabhängigkeit der Zufallsvariablen. Der weitere Beweis
folgt wieder mit der Tschebyscheff-Ungleichung, angewandt auf die
Zufallsvariable .
Zum Beweis der -Version
geht man o.B.d.A.
davon aus, dass alle Zufallsvariablen den Erwartungswert 0 haben. Aufgrund der
paarweisen Unkorreliertheit gilt die Gleichung von Bienaymé noch, es ist dann
.
Durch Anwendung der Tschebyscheff-Ungleichung erhält man
.
für
nach der Voraussetzung an die Varianzen.
Khinchins schwaches Gesetz der großen Zahlen
Verzichtet man auf die endliche Varianz als Voraussetzung, so steht die Tschebyscheff-Ungleichung zum Beweis nicht mehr zur Verfügung.
Der Beweis erfolgt stattdessen mithilfe von charakteristischen
Funktionen. Ist ,
so folgt mit den Rechenregeln für die charakteristischen Funktionen und der Taylor-Entwicklung,
dass
,
was für
aufgrund der Definition
der Exponentialfunktion gegen
konvergiert, der charakteristischen Funktion einer Dirac-verteilten
Zufallsvariable. Also konvergiert
in
Verteilung gegen eine Dirac-verteilte Zufallsvariable im Punkt
.
Da aber diese Zufallsvariable fast sicher konstant ist, folgt auch die
Konvergenz in Wahrscheinlichkeit der
gegen
,
was zu zeigen war.
Alternative Formulierungen
Allgemeinere Formulierung
Etwas allgemeiner sagt man, dass die Folge der Zufallsvariablen dem schwachen
Gesetz der großen Zahlen genügt, wenn es reelle Folgen
mit
und
gibt, so dass für die Partialsumme
die Konvergenz
in Wahrscheinlichkeit gilt.
Mit dieser Formulierung lassen sich auch Konvergenzaussagen treffen, ohne dass die Existenz der Erwartungswerte vorausgesetzt werden muss.
Speziellere Formulierung
Manche Autoren betrachten die Konvergenz in Wahrscheinlichkeit der
gemittelten Partialsummen
gegen
.
Diese Formulierung setzt jedoch voraus, dass alle Zufallsvariablen denselben
Erwartungswert haben.
![Trenner](/button/corpdivider.gif)
![Extern](/button/extern.png)
![Seitenende](/button/stonrul.gif)
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 25.08. 2021