Potenzreihenansatz
Ein Potenzreihenansatz ist ein Lösungsansatz für Differentialgleichungen. Die gesuchte Funktion wird als Potenzreihe mit unbekannten Koeffizienten dargestellt und dann in die Differentialgleichung eingesetzt. Durch Koeffizientenvergleich kann so die Lösung gefunden und in manchen Fällen wieder durch elementare Funktionen ausgedrückt werden.
Im allgemeinen Fall, wenn die Koeffizientenfunktionen meromorph sind wie bei der Fuchsschen Differentialgleichung (zu der die Hypergeometrische Differentialgleichung gehört), muss die Differentialgleichung grundsätzlich im Komplexen (Riemannsche Zahlenkugel) betrachtet werden. Es gibt bei Differentialgleichungen vom Fuchsschen Typ (mit ausschließlich hebbaren Singularitäten auch im Unendlichen) verallgemeinerte Potenzreihenlösungen und die lokal als Potenzreihenlösungen gegebenen Fundamentallösungen der Differentialgleichung sind durch Betrachtung von analytischen Fortsetzungen um die singulären Punkte der Koeffizientenfunktionen über Monodromie-Matrizen verbunden.
Die Exponentialfunktion als motivierendes Beispiel
Als einfaches Beispiel betrachten wir folgende Fragestellung: Welche Funktion ergibt abgeleitet ein Vielfaches dieser Funktion? Als Gleichung:
Diese gewöhnliche Differentialgleichung 1. Ordnung ist eindeutig lösbar, wenn noch eine Anfangsbedingung festgelegt wird:
Für
setzen wir nun eine Potenzreihe an:
Die Anfangsbedingung übersetzt sich zu ,
weil
.
Die Ableitung von
ist folglich:
Eingesetzt in obige Differentialgleichung heißt das:
Da dies für alle
gelten soll, müssen die Koeffizienten vor
usw. gleich sein. Folglich ist:
usw. Dies lässt sich umstellen und einsetzen:
,
,
.
Allgemein ist:
und somit
für alle
.
Dies ist eine Rekursionsgleichung
für die Koeffizienten
und es ergibt sich:
.
Eingesetzt in die Potenzreihe heißt dies:
.
Wenn wir darin die Potenzreihe der Exponentialfunktion wiedererkennen, lässt sich die Lösung noch kompakter schreiben als:
.
Theoretische Begründung
Zur theoretischen Begründung dieses Verfahrens sollte man bereits im Vorfeld wissen, dass es eine holomorphe Lösung gibt, das heißt eine Lösung, die sich in eine Potenzreihe entwickeln lässt.
Natürlich kann man das einfach annehmen, auf Basis dieser Annahme wie im einleitenden Beispiel eine Lösung konstruieren und dann diese durch Einsetzen prüfen. Kann man aber die Rekursion der Koeffizienten nicht auflösen und kann man nur einige Koeffizienten berechnen, so hat man ein Polynom als Approximation einer möglichen Lösung, aber das ist nur sinnvoll, wenn die Existenz einer holomorphen Lösung gesichert ist. Das liefert der folgende Satz:
- Satz: Seien
sowie
gegeben und
holomorph, wobei
und
. Dann existiert genau eine holomorphe Lösung
des Anfangswertproblems
-
,
- und zwar mindestens auf dem offenen Kreis
.
In obigem Beispiel ist
und
.
Für
ist
.
Der durch den Satz zugesicherte Konvergenzradius von
kann also kleiner sein als der tatsächliche Konvergenzradius der Lösung, der im
vorliegenden Beispiel bekanntlich unendlich ist. Der Identitätssatz
für holomorphe Funktionen zeigt dann, dass die gefundene Lösung auch
außerhalb des Konvergenzradius noch das Anfangswertproblem löst, solange man
in einer zusammenhängenden
Umgebung des Konvergenzkreises noch bilden kann.
Insbesondere zeigt dieser Satz, dass der Potenzreihenansatz im Falle holomorpher rechter Seite des Anfangswertproblems zum Erfolg führt.
Weiteres Beispiel: Hermitesche Differentialgleichung
Gesucht wird die Lösung der Hermiteschen Differentialgleichung
Man setzt die Lösung als Potenzreihe an:
Um die weitere Rechnung einfacher zu gestalten, wurde in diesem Ansatz im
Vergleich zum letzten Beispiel ein Faktor
eingeführt.
Folglich ist:
Eingesetzt in die Differentialgleichung heißt das:
Der Koeffizientenvergleich ergibt für die konstanten Terme ():
und für alle weiteren (
):
.
Multiplikation mit
ergibt:
, d.h.
.
Sind die Koeffizienten
und
bspw. aus Anfangsbedingungen bekannt, dann lassen sich alle weiteren
Koeffizienten
berechnen und ggf. als Reihe zusammenfassen. Die analytische Lösung der
Differentialgleichung lautet also:
.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 10.06. 2021