Barrer

Physikalische Einheit
Einheitenname Barrer
Physikalische Größe(n) Permeabilität (Festkörper)
Dimension {\displaystyle {\mathsf {L^{3}\;T\;M^{-1}}}}
System Technisches Maßsystem
In SI-Einheiten {\displaystyle 1\ {\text{Barrer}}\approx 7{,}5006\cdot 10^{-18}\,{\frac {{{\text{m}}^{3}}\cdot {\text{s}}}{\text{kg}}}}
In CGS-Einheiten {\displaystyle 1\ {\text{Barrer}}=10^{-10}\,{\frac {{\text{cm}}^{3}}{{\text{s}}\cdot {\text{cm}}\cdot {\text{cmHg}}}}}
Benannt nach Richard Barrer
Abgeleitet von Torr, Zentimeter, Sekunde

Barrer (nach Richard Maling Barrer) ist eine Einheit im Technischen Maßsystem (keine SI-Einheit) für die Gaspermeabilität von Stoffen. Die Einheit wird u.a. bei der Beschreibung der Eigenschaften von Membranen und Dichtungsmaterialien verwendet.

Eine vergleichbare Einheit, welche die Permeabilität poröser Stoffe für Flüssigkeiten beschreibt, ist das Darcy.

Definition

Abweichend von der Permeabilität K (SI-Einheit m²) ist die Permeabilität im Sinne des Barrer definiert als:

{\displaystyle {\frac {K}{\eta }}={\frac {Q\,x}{A\,\Delta p}}}

mit

Das Barrer ist definiert als:

{\displaystyle {\begin{aligned}1\ {\text{Barrer}}&=10^{-10}\,{\frac {\mathrm {cm} ^{3}}{\mathrm {s} }}\cdot {\frac {\mathrm {cm} }{\mathrm {cm} ^{2}\cdot \mathrm {cmHg} }}\\&=10^{-10}\,{\frac {\mathrm {cm} ^{3}}{\mathrm {s} \cdot \mathrm {cm} \cdot \mathrm {cmHg} }}\end{aligned}}}

Umrechnung in SI-Einheiten:

{\displaystyle {\begin{aligned}1\ {\text{Barrer}}&\approx 10^{-10}\,{\frac {10^{-6}\,{\mathrm {m} ^{3}}}{s\cdot 10^{-2}\,\mathrm {m} \cdot 1{,}33322\cdot 10^{3}\,\mathrm {Pa} }}\\&\approx 7{,}5006\cdot 10^{-18}\,{\frac {\mathrm {m} ^{3}}{\mathrm {s} \cdot \mathrm {m} \cdot \mathrm {Pa} }}\\&\approx 7{,}5006\cdot 10^{-18}\,{\frac {{\mathrm {m} ^{3}}\cdot \mathrm {s} }{\mathrm {kg} }}\end{aligned}}}

Nebenrechnung: die Flussrate kann über das ideale Gasgesetz auch in mol/s dargestellt werden (vgl. Molvolumen):

{\displaystyle {\begin{aligned}p\cdot V&=n\cdot R_{\mathrm {m} }\cdot T\\\Leftrightarrow Q={\frac {V}{t}}&={\frac {n}{t}}\,{\frac {R_{\mathrm {m} }\cdot T}{p}}\\\Leftrightarrow {\dot {n}}&={\frac {Q\cdot p}{R_{\mathrm {m} }\cdot T}}\\\Rightarrow 1\,{\frac {\mathrm {m} ^{3}}{\mathrm {s} }}\cdot {\frac {101325\,\mathrm {Pa} }{8{,}314\,{\tfrac {\mathrm {J} }{\mathrm {mol} \,\mathrm {K} }}\cdot 273{,}15\,\mathrm {K} }}&\approx 44{,}6\,{\frac {\mathrm {mol} }{\mathrm {s} }}\end{aligned}}}

mit

Damit ergibt sich:

{\displaystyle {\begin{aligned}\dots \Rightarrow 1\ {\text{Barrer}}&\approx 7{,}5006\cdot 10^{-18}\cdot 44{,}6\,\mathrm {mol} \cdot {\frac {\mathrm {s} }{\mathrm {kg} }}\\&\approx 3{,}346\cdot 10^{-16}\,{\frac {\mathrm {mol} \cdot \mathrm {s} }{\mathrm {kg} }}\end{aligned}}}

Permeationsrate

Die Rate der Gaspermeation folgt der Richtung der Partialdruckdifferenz:

{\displaystyle \dots \Leftrightarrow Q={\frac {K\,A\,\Delta p}{\eta \,x}}}

Sie nimmt linear zu mit dem Druck und mit dem Durchdringungsquerschnitt, sie nimmt linear ab mit der Länge des Permeationsweges und verhält sich wie eine molekulare Strömung.

Permeationskoeffizient

In der Lecksuchtechnik gibt man statt der Permeationsrate Q ihr Produkt mit der Druckdifferenz \Delta p an, also die Verlustleistung

{\displaystyle P=\Delta p\cdot Q}

Der Permeationskoeffizient C definiert das Permeationsverhalten einer Kombination Gas zu Material:

{\displaystyle {\begin{aligned}C&=10^{8}\cdot {\frac {P\cdot x}{A\cdot \Delta p}}\\&=10^{8}\cdot {\frac {Q\cdot x}{A}}\\&=10^{8}\cdot {\frac {K}{\eta }}\cdot \Delta p\end{aligned}}}

mit

Der Permeationskoeffizient C beträgt z.B. für

Aufgelöst nach der Verlustleistung ergibt sich:

{\displaystyle \Leftrightarrow P=10^{-8}\cdot {\frac {C\cdot A\cdot \Delta p}{x}}.}

So ist z. B. die Verlustleistung von Helium durch eine Teflonmembrane mit einer Dicke {\displaystyle x=1\,\mathrm {mm} } und einer Fläche {\displaystyle A=10\,\mathrm {cm} ^{2}} bei einer Druckdifferenz {\displaystyle \Delta p=1\,\mathrm {bar} }:

{\displaystyle {\begin{aligned}P&=10^{-8}\cdot {\frac {523\,{\frac {\mathrm {mbar} \cdot {\tfrac {\mathrm {l} }{\mathrm {s} }}\cdot \mathrm {cm} }{\mathrm {cm} ^{2}\cdot \mathrm {bar} }}\cdot 10\,\mathrm {cm} ^{2}\cdot 1\,\mathrm {bar} }{1\,\mathrm {cm} }}\\&=5{,}23\cdot 10^{-5}\,\mathrm {mbar} \cdot {\frac {\mathrm {l} }{\mathrm {s} }}\\&=5{,}23\,\mu \mathrm {W} \end{aligned}}}

Literatur

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 29.06. 2023