Verzerrung einer Schätzfunktion
Die Verzerrung oder auch das Bias oder systematischer Fehler einer Schätzfunktion ist in der Schätztheorie, einem Teilgebiet der mathematischen Statistik, diejenige Kennzahl oder Eigenschaft einer Schätzfunktion, welche die systematische Über- oder Unterschätzung der Schätzfunktion quantifiziert.
Erwartungstreue Schätzfunktionen haben per Definition eine Verzerrung von .
Definition
Gegeben sei eine zu schätzende Funktion
sowie ein statistisches Modell und ein Punktschätzer
Dann heißt
die Verzerrung des Schätzers bei .
Dabei bezeichnet den Erwartungswert bezüglich des Wahrscheinlichkeitsmaßes . Man schreibt das bei und tiefgestellt, um hervorzuheben, dass die Größen vom wahren Wert abhängen.
Die Notation für die Verzerrung ist nicht einheitlich, in der Literatur finden sich u.a. auch , oder .
Beispiel
Gegeben seien Zufallszahlen, die gleichverteilt in einem Intervall sind. Aufgabe ist, zu schätzen. Statistisches Modell ist
- ,
wobei und die stetige Gleichverteilung auf ist.
Die zu schätzende Funktion ist , ein möglicher Schätzer wäre
- ,
da die größte ausgegebene Zufallszahl intuitiv "nah" an der unbekannten Obergrenze liegt. Dann ist
für alle . Daraus folgt
- ,
somit ist die Verzerrung
- .
Die Verzerrung kommt hier zustande, da der Schätzer den wahren Wert stets unterschätzt, es ist .
Eigenschaften
Ist die Verzerrung eines Schätzers für alle gleich Null, also
- ,
so nennt man diesen Schätzer einen erwartungstreuen Schätzer.
Der mittlere quadratische Fehler
zerfällt aufgrund des Verschiebungssatzes in Varianz und Verzerrung
Somit entspricht der mittlere quadratische Fehler bei erwartungstreuen Schätzern genau der Varianz des Schätzers.
Sowohl die Verzerrung als auch der mittlere quadratische Fehler sind wichtige Qualitätskriterien für Punktschätzer. Folglich versucht man, beide möglichst klein zu halten. Es gibt aber Fälle, in denen es zur Minimierung des mittleren quadratischen Fehlers sinnvoll ist, Verzerrung zuzulassen.
So ist im Binomialmodell mit ein gleichmäßig bester erwartungstreuer Schätzer gegeben durch
- ,
heißt seine Varianz (und damit auch sein mittlerer quadratischer Fehler) ist für alle kleiner als die jedes weiteren erwartungstreuen Schätzers. Der Schätzer
ist nicht erwartungstreu und folglich verzerrt, besitzt aber für Werte von nahe an einen geringeren mittleren quadratischen Fehler.
Es können also nicht immer Verzerrung und mittlerer quadratischer Fehler gleichzeitig minimiert werden.
Siehe auch
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 11.08. 2021