Fastperiodische Funktion
Fastperiodische Funktionen werden im mathematischen Teilgebiet der harmonischen Analyse betrachtet. Es handelt sich dabei um auf Gruppen definierte Funktionen, die eine angenäherte Periodizitätseigenschaft haben. Sie wurden 1924/1925 von Harald Bohr eingeführt und erwiesen sich als wichtiges Werkzeug zur Untersuchung der Darstellungstheorie von Gruppen, insbesondere ihrer endlichdimensionalen Darstellungen. Letzteres wurde mit einer leicht abgeänderten Definition von Hermann Weyl ausgeführt, eine weitere Variante geht auf John von Neumann zurück.
Fastperiodische Funktionen nach Bohr
Bohr verallgemeinerte den Begriff der auf der Menge
der reellen Zahlen definierten periodischen
Funktion. Zur Erinnerung heißt eine Funktion
periodisch mit Periode
,
falls
für alle
,
wie es von den Funktionen Sinus
und Kosinus bekannt ist. Eine solche Zahl
nennt man eine Periode. Offenbar sind auch ganzzahlige Vielfache solcher
Perioden wieder Perioden. Daher gibt es in jedem abgeschlossenen
Intervall
der Länge
eine solche Periode.
Eine stetige
Funktion
heißt fastperiodisch (nach Bohr), falls es zu jedem
eine Zahl
gibt, so dass in jedem Intervall
der Länge
eine Zahl
enthalten ist, so dass
für alle reellen Zahlen
.
Nach obiger Ausführung ist jede stetige, periodische Funktion offenbar fastperiodisch. Im weiteren nennen wir solche Funktionen präziser fastperiodisch nach Bohr, um sie von den nachfolgenden Varianten zu unterscheiden.
Fastperiodische Funktionen nach Weyl
Die hier vorgestellte Variante geht auf H. Weyl zurück. Die Definition hat einen etwas komplizierteren Aufbau, lässt sich aber für beliebige Gruppen formulieren.
Definition
Eine auf einer Gruppe
definierte Funktion
heißt fastperiodisch, wenn es zu jedem
endlich viele paarweise disjunkte Mengen
gibt mit
und
für alle
.
Diese Abschätzung gilt also, wenn nur
und
aus demselben Teil
der Gruppe stammen.
Bei dieser Definition ist auch im Falle
nicht klar, dass periodische Funktionen fastperiodisch sind, und für unstetige
Funktionen ist das sogar falsch. Die Beziehung zu Bohrs Definition, die sich
ausdrücklich auf stetige Funktionen bezieht, sieht so aus: Auf der Gruppe
stimmen die fastperiodischen Funktionen nach Bohr mit den stetigen,
fastperiodischen Funktionen überein, insbesondere sind stetige, periodische
Funktionen fastperiodisch.
Vielfache, komplex
Konjugierte, Summen und Produkte von fastperiodischen Funktionen sind wieder
fastperiodisch, ebenso gleichmäßige
Grenzwerte von Folgen fastperiodischer Funktionen. Die Menge
der fastperiodischen Funktionen bildet also eine abgeschlossene
Funktionenalgebra, sogar eine C*-Algebra.
Mittelwerte
In der Darstellungstheorie endlicher Gruppen
bildet man zu Funktionen
gemittelte Summen
.
Für unendliche Gruppen kann man derartige Mittelwerte noch für fastperiodische
Funktionen erhalten, es gilt der
Mittelwertsatz
existiert eine eindeutig bestimmte Zahl
,
der sogenannte Mittelwert von
,
so dass es zu jedem
endlich viele
gibt mit
für alle
.
Der Beweis verwendet eine geschickte Auswahl von Unterteilungen der Gruppe, wie sie in obiger Definition der Fastperiodizität vorkamen; bei diesem mehr oder weniger kombinatorischen Vorgehen kommt der Heiratssatz zum Einsatz.
Der Mittelwert ist linear und monoton und es ist ,
wobei mit
die konstante Funktion mit Wert 1 auf
bezeichnet sei. Man kann den Mittelwert daher wie ein Integral verwenden. Sind
etwa
zwei fastperiodische Funktionen, so ist durch
ein Skalarprodukt
definiert, das
zu einem Prähilbertraum
macht.
Hauptsatz über fastperiodische Funktionen
Die Gruppe
operiert auf
durch die Formel
,
das heißt
wird zu einem
-Modul,
der bzgl. der gleichmäßigen Konvergenz abgeschlossen ist. Ein Untermodul heißt
invariant, wenn er unter der Gruppenoperation abgeschlossen ist, er heißt
abgeschlossen, wenn er bzgl. der gleichmäßigen Konvergenz abgeschlossen ist, und
er heißt irreduzibel, wenn er außer dem Nullmodul
und sich selbst keine weiteren invarianten Untermoduln enthält. Indem man die
oben eingeführte Prähilbertraumstruktur verwendet, kann man den sogenannten
Hauptsatz über fastperiodische Funktionen zeigen:
- Jeder abgeschlossene, invariante Untermodul von
ist gleichmäßiger Abschluss einer Vektorraumsumme endlichdimensionaler, invarianter, irreduzibler Untermoduln.
Damit beherrscht man die Darstellungstheorie, wenn
nur ausreichend reichhaltig ist. In Extremfällen kann
allerdings aus nur den konstanten Funktionen bestehen, dann ist der Hauptsatz
trivial. Ist
eine kompakte Gruppe, so kann man zeigen, dass jede stetige Funktion
fastperiodisch ist, was dann zur bekannten Darstellungstheorie kompakter Gruppen
führt, insbesondere ist der Fall endlicher Gruppen enthalten.
Fastperiodische Funktionen nach von Neumann
J. von Neumann hat unter Verwendung des Haarschen Maßes, das den bisher beschriebenen Entwicklungen noch nicht zur Verfügung stand, einen anderen Zugang gefunden, der insbesondere das Wesen obigen Mittelwertes klärt.
Ist
eine Abbildung auf einer Gruppe und ist
,
so seien die Funktionen
und
durch die Formeln
definiert. Eine beschränkte Funktion
ist nun genau dann fastperiodisch, wenn die Mengen
und
im metrischen
Raum der beschränkten Funktionen
mit der mittels der Supremumsnorm
definierten Metrik totalbeschränkt
sind.
Diese Bedingung ist von Neumanns Definition. Mit diesem Ansatz konnte von Neumann unter anderem zeigen, dass jede kompakte Gruppe, die als topologischer Raum eine (endlichdimensionale) topologische Mannigfaltigkeit ist, eine Liegruppe ist, was das fünfte Hilbertsche Problem für kompakte Gruppen löste.
Der Mittelwert, der die oben beschriebene Theorie erst ermöglichte, ergibt
sich hier wie folgt. Zunächst zeigt man, dass es zu jeder topologischen Gruppe
eine kompakte Gruppe
und einen stetigen Gruppenhomomorphismus
mit folgender universeller
Eigenschaft gibt: Zu jedem stetigen Gruppenhomorphismus
in eine kompakte Gruppe
gibt es genau einen stetigen Gruppenhomorphismus
,
so dass
.
Eine solche kompakte Gruppe
ist bis auf Isomorphie eindeutig bestimmt und heißt die zu
assoziierte kompakte Gruppe
oder die Bohr-Kompaktifizierung
von
.
Ferner kann man zeigen, dass eine beschränkte Funktion
genau dann fastperiodisch ist, wenn es eine Funktion
mit
gibt.
Mit diesen Begriffen gilt für eine fastperiodische Funktion
:
- Die abgeschlossene, konvexe
Hülle aller Funktionen
enthält genau eine konstante Funktion, und diese hat den Wert
. Ist
das auf 1 normierte Haarsche Maß, so gilt
.
Damit ergibt sich der Mittelwert hier auf ganz natürliche Weise. Die weitere oben angedeutete Theorie kann nun auf diesem Mittelwert aufgebaut werden.
Ein noch abstrakterer Zugang findet sich in .
Die Menge der beschränkten fastperiodischen Funktionen
auf einer Gruppe
bildet eine kommutative C*-Algebra mit Einselement, diese ist nach dem Satz von
Gelfand-Neumark isometrisch isomorph zu einer Algebra
stetiger Funktionen auf einem kompakten Raum
,
der mit dem Raum aller Homomorphismen der kommutativen C*-Algebra nach
identifiziert werden kann (siehe Gelfand-Transformation).
Da die Punktauswertungen
für jedes
ein solcher Homomorphismus
ist, erhält man eine Abbildung
.
Von dieser kann man zeigen, dass sie stetig ist und dass sich die
Gruppenoperation von
auf
fortsetzt. Damit ist die zu
assoziierte Gruppe (s.o.) konstruiert.
Für eine lokalkompakte,
abelsche Gruppe
kann die assoziierte, kompakte Gruppe wie folgt konstruiert werden. Sei
die Dualgruppe,
sei dieselbe Gruppe, aber versehen mit der diskreten
Topologie, so dass die Abbildung
stetig ist. Wendet man darauf die Pontrjagin-Dualität
an, erhält man eine stetige Abbildung
.
Nach dem Dualitätssatz
von Pontrjagin ist die linke Seite isomorph zu
und die rechte Seite als Dualgruppe einer diskreten Gruppe kompakt. Die
assoziierte, kompakte Gruppe ergibt sich also erneut auf ganz natürlich Weise.
Weitere Begriffe fastperiodischer Funktionen
Die definierende Bedingung in Bohrs Definition der fastperiodischen Funktion kann als
geschrieben werden, wobei
durch
definiert sei. Indem man die Norm
durch andere Abstandsbegriffe ersetzt, kommt man zu anderen Definitionen. Dies
ist von einigen Autoren umgesetzt worden, die damit insbesondere eine
Verallgemeinerung auf unstetige Funktionen verfolgten.
Wjatscheslaw Wassiljewitsch Stepanow verwendete den Abstandsbegriff
,
wobei
und
.
H. Weyl verwendete diesen Abstandsbegriff für den Grenzfall
.
Schließlich soll noch der Ansatz von Abram Samoilowitsch Besikowitsch" erwähnt werden, er legte den Abstandsbegriff
zu Grunde.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 31.03. 2021