Rechtwinkliges Dreieck

Dreieck mit dem rechten Winkel  \gamma und der Ankathete und der Gegenkathete von \alpha

Ein rechtwinkliges Dreieck ist ein Dreieck mit einem rechten Winkel.

Bezeichnungen

Als Hypotenuse[1] bezeichnet man die längste Seite eines rechtwinkligen Dreiecks. Sie liegt dem rechten Winkel gegenüber.

Als Kathete (aus dem griechischen káthetos, das Herabgelassene, Senkblei) wird jede der beiden kürzeren Seiten in einem rechtwinkligen Dreieck bezeichnet. Die Katheten sind also die beiden Seiten des rechtwinkligen Dreiecks, die den rechten Winkel bilden. In Bezug auf einen der beiden spitzen Winkel (in der Skizze \alpha) des Dreiecks unterscheidet man die Ankathete dieses Winkels (die dem Winkel anliegende Kathete) und die Gegenkathete (die dem Winkel gegenüberliegende Kathete).

Sätze

Die Beziehung zwischen den Längen der Katheten und der Hypotenuse beschreibt der Satz des Pythagoras, der auch Hypotenusensatz heißt. (Der Satz lautet: Sind a und b die Seitenlängen der Katheten und ist c die Seitenlänge der Hypotenuse, so gilt die Gleichung a² + b² = c²)

Anders formuliert besagt der Satz des Pythagoras, dass die Summe der Flächeninhalte der beiden Quadrate über den Katheten gleich dem Flächeninhalt des Quadrats über der Hypotenuse ist. Aus dieser Tatsache folgen der Katheten- und der Höhensatz (siehe auch Satzgruppe des Pythagoras).

Der Satz des Thales besagt, dass jedes Dreieck im Halbkreis ein rechtwinkliges Dreieck ist. Der Mittelpunkt der Hypotenuse ist das Zentrum des Thaleskreises, des Umkreises des rechtwinkligen Dreiecks.

Der Fußpunkt der Höhe teilt die Hypotenuse in zwei Hypotenusenabschnitte. Der Kathetensatz und der Höhensatz machen Aussagen über die Längen dieser Teilstrecken.

Die trigonometrischen Funktionen beschreiben die rechnerischen Zusammenhänge zwischen den Winkeln und den Seitenverhältnissen.

Berechnung und Konstruktion

Ein rechtwinkliges Dreieck ist vollständig bestimmt durch drei Bestimmungsstücke: den rechten Winkel, eine Seite sowie eine weitere Seite oder einen weiteren Winkel.

Die Höhen der Katheten h_a, \, h_b sind identisch mit der jeweils anderen Kathete b, \, a. Der Höhenschnittpunkt liegt daher im Punkt C. Der Umkreismittelpunkt liegt im Mittelpunkt der Hypotenuse. Der Schwerpunkt liegt im Dreieck auf der Gerade zwischen Höhenschnittpunkt und Umkreismittelpunkt.

Mathematische Formeln zum rechtwinkligen Dreieck
Flächeninhalt: A=\frac{a\cdot b}{2}
Hypotenuse: c=\sqrt{a^2+b^2}
Umfang: U=a+b+c
Höhe: h_c=\frac{a\cdot b}{c}
Winkel: \alpha+\beta=\gamma=90^\circ

Siehe auch

Anmerkungen

  1. Die Bezeichnung „Hypotenuse“ kommt von dem gleichbedeutenden, altgriechischen Begriff ὑποτείνουσα, hypoteinousa, der von: hypo – unter und teinein – spannen, sich erstrecken abgeleitet ist.
Trenner
Basierend auf einem Artikel in: externer Link Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung: Jena, den: 12.02. 2020