Cobalamine

Sicherheitshinweise
Bitte die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln beachten
GHS-Gefahrstoffkennzeichnung
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze
Toxikologische Daten
  • 5000 mg·kg−1 (LD50, Meerschweinchen, oral, Coenzym B12)
  • 2000 mg·kg−1 (LD50, Maus, i.p., Coenzym B12)

Cobalamine sind chemische Verbindungen, die in allen Lebewesen vorkommen. Ihr wichtigster Vertreter ist das Coenzym B12 − die biologisch aktive Form des Vitamins B12 − das als Kofaktor (Coenzym) Teil mehrerer Enzyme ist. Beim Menschen sind zwei Cobalamin-abhängige Enzyme bekannt, die am Stoffwechsel der Aminosäuren teilnehmen. Cobalamine enthalten das Spurenelement Cobalt als Zentralatom.

In der Medizin als Vitamin verwendet, wird Cyanocobalamin dabei vom menschlichen Organismus in das biologisch wirksame Coenzym B12 umgewandelt. Weitere zur Vitamin-B12-Gruppe gehörende Cobalamine sind die Speicherformen

sowie die eigentlich biologisch wirksamen Coenzym-Formen des Vitamins

Geschichte

Strukturformel
Strukturformel der Cobalamine
Coenzym B12 (=AdoCbl): R = 5′-Desoxyadenosyl
Cyanocobalamin (=Vitamin B12): R = –C≡N
Aquocobalamin (=Vitamin B12a): R = –OH2
Hydroxycobalamin (=Vitamin B12b): R = –OH
Methylcobalamin (=MeCbl oder MeB12): R = –CH3
Allgemeines
Trivialname 5′-Desoxyadenosylcobalamin
Andere Namen
  • Coenzym B12
  • Adenosylcobalamin
  • AdoCbl
  • Cobamamid (International Nonproprietary Name( INN))
Summenformel C62H88CoN13O14P
CAS-Nummer
  • 13870-90-1 (Coenzym B12)
  • 68-19-9 (Cyanocobalamin)
PubChem 16072210
ATC-Code B03BA04
DrugBank DB00115
Kurzbeschreibung roter, kristalliner Feststoff (Cyanocobalamin)
Vorkommen tierische Produkte
Physiologie
Funktion Zellteilung, Blutbildung, Funktion des Nervensystems
Täglicher Bedarf 3 µg
Folgen bei Mangel Perniziöse Anämie, neurologische Erkrankungen (z.B. funikuläre Myelose), Glossitis, Diarrhöen
Überdosis nicht bekannt
Eigenschaften
Molare Masse
  • 1579,58 g/mol (Coenzym B12)
  • 1355,37 g/mol (Cyanocobalamin)
Aggregatzustand fest
Schmelzpunkt

zersetzt sich ab 392 °C (Cyanocobalamin)

Löslichkeit wenig löslich in Wasser: 12 g/l, unlöslich in Ether, Aceton und Chloroform (Cyanocobalamin)

Nachdem schon Anfang der 1920er Jahre der US-amerikanische Pathologe George H. Whipple entdeckt hatte, dass Hunde, die an perniziöser Anämie (bösartige Blutarmut) litten, durch Fütterung mit roher Leber von dieser sonst tödlich verlaufenden Krankheit geheilt werden konnten, führte die Suche nach der essenziellen Komponente dieser Heilmethode schließlich 1926 zur Beschreibung eines auch beim Menschen wirksamen „Antiperniziosa-Faktors“ durch die beiden US-amerikanischen Ärzte George R. Minot und William P. Murphy, die dafür zusammen mit Whipple 1934 den Nobelpreis für Medizin erhielten.

Die Isolierung des eigentlichen Wirkstoffs dagegen, des Vitamins B12 (Cyanocobalamin), gelang in kristalliner Form erst 1948, und das unabhängig voneinander zum einen einem Team amerikanischer Biochemiker um Karl A. Folkers, zum anderen einem britischen Forscherteam um den Chemiker E. Lester Smith.

1955 schließlich konnte die britische Biochemikerin Dorothy C. Hodgkin mit Hilfe der Röntgenbeugung an Vitamin-B12-Einkristallen auch deren Molekülstruktur aufklären, wofür sie u.a. 1964 mit dem Nobelpreis für Chemie geehrt wurde.

Die darauf aufbauende Totalsynthese des Vitamins B12 gelang 1972 Albert Eschenmoser und Robert B. Woodward, und noch heute gilt Vitamin B12 damit als eines der größten jemals in einem Labor totalsynthetisierten Moleküle.

Beschreibung

Cobalamine sind organometallische Verbindungen mit einem zentralen ein-, zwei- oder dreifach positiv geladenen Cobalt-Ion und als solche die bisher einzigen bekannten cobalthaltigen Naturstoffe.

Alle Cobalamine besitzen dabei dieselbe Grundstruktur eines Cobaltkomplexes, in dem das Cobaltkation von fünf Stickstoffatomen und einem sechsten, i.d.R. austauschbaren Liganden umgeben ist (siehe Abb.). Vier der Stickstoffatome gehören zu einem ebenen Corrin-Ringsystem, das das Cobaltkation so fest umschließt, dass es praktisch nur durch Zerstörung des Ringsystems wieder herausgelöst werden kann, während das fünfte Stickstoffatom zu einem nucleotidartig an den Corrinring gebundenen 5.6-Dimethyl-benzimidazol-Ring gehört.

Namensgebend für das jeweilige Cobalamin indes ist der sechste, austauschbare Ligand, der in den chemischen Strukturformeln meist mit R (für „Rest“) abgekürzt wird: Ist R eine Hydroxygruppe, handelt es sich bei dem Cobalamin um Hydroxycobalamin, ist R eine Cyanogruppe, um Cyanocobalamin, und bei einem 5'-Desoxyadenosylliganden als „Rest“ um 5'-Desoxyadenosylcobalamin, kurz Coenzym B12.

Meist ist der sechste Ligand R nur schwach an das Cobaltkation gebunden, so dass er leicht durch andere Liganden austauschbar ist und der menschliche Organismus zum Beispiel das therapeutisch eingesetzte Hydroxycobalamin oder Cyanocobalamin (Vitamin B12) durch Austausch der Hydroxy- gegen eine Cyanogruppe und dieser wiederum gegen eine 5'-Desoxyadenosylgruppe in das eigentlich biochemisch aktive Coenzym B12 umwandeln kann.

Cyanocobalamin (Vitamin B12) selbst ist eine geruchlose, tief dunkelrote, kristalline hygroskopische Substanz, die sich nur mäßig in Wasser und niederen Alkoholen, dagegen gar nicht in (apolaren) organischen Lösungsmitteln wie Aceton, Chloroform oder Ether löst. Zudem ist die Substanz zwar relativ hitzestabil, doch lichtempfindlich.

In der Zelle kommen Cobalamine im Cytosol vor allem als Methylcobalamin, in den Mitochondrien dagegen überwiegend als 5'-Desoxyadenosylcobalamin (Coenzym B12) vor. Die Abbildung zeigt die allgemeine Strukturformel der Cobalamine mit R als austauschbarem Liganden.

Nomenklatur

Aus historischen Gründen wird der Begriff „Adenosylcobalamin“ oft auch für das synthetische, zunächst einmal biologisch inaktive Vitamin B12, d.h. Cyanocobalamin benutzt, während umgekehrt der Begriff „Vitamin B12“ immer wieder, vor allem in der Ernährungsliteratur, für das Coenzym B12, andere Cobalamine oder für die ganze Cobalamin-Stoffgruppe schlechthin gebraucht wird, was im Widerspruch zur bioanorganischen Nomenklatur steht, die diesen Begriff allein für das biologisch inaktive Cyanocobalamin reserviert. Wo immer also im Folgenden von den Eigenschaften von Vitamin B12 (und nicht Coenzym B12) die Rede ist, sollen damit stets die Eigenschaften von Cyanocobalamin (und nicht Adenosylcobalamin) gemeint sein.

Nicht zu verwechseln schließlich mit den eigentlichen Cobalaminen sind die Transcobalamine, bei denen es sich lediglich um Transportproteine für Vitamin B12 handelt.

Funktion im Organismus

Vereinfachend zusammengefasst ist Vitamin B12 wichtig für die Zellteilung und Blutbildung sowie die Funktion des Nervensystems.

Coenzym B12 nimmt im humanen Organismus als Coenzym an nur zwei enzymatischen Reaktionen teil:

Die Reaktion der Methionin-Synthase dient u.a. der Regeneration des Methylgruppenüberträgers S-Adenosylmethionin (SAM) bzw. der Bildung von Methionin. Dabei wird Homocystein zum Methionin remethyliert. Gelingt dies nicht, bildet sich vermehrt Homocystein, ein Zwischenprodukt beim Abbau der Aminosäure Methionin (erhöhte Homocysteinspiegel werden mit der Bildung von Arteriosklerose in Zusammenhang gebracht). Als Methylgruppendonator fungiert dabei N5-Methyl-Tetrahydrofolat (N5-Methyl-THF)(Tetrahydrofolsäure). Fehlt Coenzym B12, so reichert sich N5-Methyl-THF an und es kommt zu einem sekundären Mangel an THF, welches für die Synthese der Purinbasen Adenin und Guanin und der Pyrimidinbase Thymin erforderlich ist. Durch einen Mangel an diesen Nukleobasen ist die Synthese insbesondere von DNA aber auch RNA gestört. Dies äußert sich vorrangig in Organen mit hoher Zellteilungsaktivität wie dem Knochenmark. Es kommt zu einer mehr oder minder ausgeprägten Panzytopenie im Blut, wobei der Mangel an Erythrozyten – die Anämie – am offensichtlichsten ist. Die verbleibenden Erythrozyten werden mit Hämoglobin „vollgestopft“, so dass sie einen höheren Hämoglobingehalt als normale Erythrozyten haben. Auch sind diese Zellen etwas größer. Daher spricht man von einer hyperchromen, makrozytären Anämie. Durch die Gabe von Folsäure kann dieser Block umgangen werden, jedoch löst dieser Ansatz nicht den zugrundeliegenden Vitamin-B12-Mangel, so dass die Behandlung der perniziösen (wörtl. „gefährlich“) oder megaloblastären Anämie bei Vitamin-B12-Mangel mit Folsäure einen Kunstfehler darstellt.

Schematische Darstellung des vereinfachten Stoffwechsel der Folsäure und deren Interaktion mit der Vitamin-B12-abhängigen Methionin-Synthasereaktion
Schematische Darstellung der Einschleusung (zumindest eines Teils) der Kohlenstoffskelette einiger Aminosäuren über den Vitamin-B12-abhängigen Schritt der Methylmalonyl-CoA-Mutase

Der Grund hierfür ist die zusätzliche Funktion des Vitamin B12 in der Methylmalonyl-CoA-Mutase. Diese dient der Einschleusung des terminalen Propionyl-CoAs ungeradzahliger Fettsäuren, sowie Teilen des Kohlenstoffgerüstes der Aminosäuren Valin, Isoleucin, Threonin und Methionin in den mitochondrialen Citratzyklus. Das im Rahmen des Abbaus dieser Verbindungen aus Propionyl-CoA (in einem Biotin-abhängigen Schritt) gebildete Methylmalonyl-CoA wird durch die Vitamin-B12-abhängige Methylmalonyl-CoA-Mutase zu Succinyl-CoA, einem Zwischenprodukt des Citratcyclus, umgesetzt.

Ist dieser Schritt gehemmt, kommt es zu einem Anstieg von Methylmalonsäure im Plasma und vor allem im Urin. Dieser Stoffwechselweg spielt offenbar eine besondere Rolle im Zentralnervensystem (ZNS), da sich ein Vitamin-B12-Mangel bisweilen sogar vor der typischen Anämie mit Symptomen wie z.B. der funikulären Myelose, einer Störung der Pyramidenbahn und der Hinterstränge, aber auch scheinbaren „Altersdemenzen“ und anderem bemerkbar macht. Daher sollte insbesondere bei älteren Patienten mit neurologischer Symptomatik ein Vitamin-B12-Mangel als mögliche (Mit-)Ursache ausgeschlossen und ggf. behandelt werden. Erste neurologische Symptome äußern sich als so genannte Polyneuropathie in Form von Kribbelparästhesien oder anderen Missempfindungen (z.B. leichtes Brennen) in verschiedenen Körperregionen, die anfangs nur vorübergehend sind.

Vorkommen

Der menschliche und tierische Organismus sowie Pflanzen sind nicht in der Lage, Vitamin B12 selbst herzustellen. Vitamin B12 wird in der Natur von Mikroorganismen – insbesondere Bakterien – produziert, die als Symbionten sowohl im Verdauungstrakt von Tieren als auch auf der Oberfläche pflanzlicher Wirte (z.B. Leguminosen) vorkommen.

Im menschlichen und tierischen Organismus wird Vitamin B12 vor allem in Leber und Niere akkumuliert, in Pflanzen kann es nur in Spuren vorkommen.

Allesfresser und Fleischfresser decken ihren B12-Bedarf durch den Konsum von Fleisch, insbesondere Innereien. Für Vegetarier stellen Milchprodukte und Eier trotz ihres vergleichsweise geringen Gehalts an Vitamin B12 bedeutende natürliche Quellen dar. Bei Wiederkäuern wird das Vitamin im Vormagen, bei anderen Pflanzenfressern im Dickdarm gebildet. Da das im Darm produzierte Vitamin B12 bei Geflügel und Schweinen jedoch nur unzureichend resorbiert wird, sind diese Arten auf eine exogene Versorgung über das Futter angewiesen. Ein Mangel bei Wiederkäuern beruht überwiegend auf unzureichender Cobaltzufuhr. In der Tierproduktion wird dem Futter in Spuren Cobalt hinzugefügt, falls die Tiere von cobaltarmen Weideflächen ernährt werden müssen. Hierüber soll Wachstums- und Laktationsstörungen, Blutarmut und Appetitlosigkeit entgegengewirkt werden.

Man nimmt an, dass Pflanzenfresser den Hauptteil ihres Bedarfes über eine Symbiose mit Mikroorganismen ihrer Darmflora decken. Auch beim Menschen kommen Mikroorganismen im Darm vor, die Vitamin B12 produzieren. Allerdings erfolgt die Synthese vor allem im Dickdarm, während die Absorption nur im terminalen Ileum, also kurz vor dem Dickdarm erfolgen kann. Daher wird das im menschlichen Dickdarm gebildete Vitamin B12 ungenutzt ausgeschieden.

Cobalamingehalt einiger Lebensmittel

Durch Milchsäuregärung haltbar gemachte Gemüse, manche Algensorten sowie Leguminosen – wie etwa Erbsen, Bohnen und Lupinen – und Zingiberales wie Ingwer besitzen einen, wenn auch geringen Gehalt an B12-Coenzymen. Auch einige Speisepilze, insbesondere der Champignon, sollen geringe Vitamin-B12-Gehalte aufweisen.

Nach etablierter Fachmeinung enthält keine pflanzliche Nahrung für den menschlichen Bedarf ausreichende Mengen der verwertbaren Form des Vitamins, dies gilt insbesondere auch für fermentierte Sojaprodukte und Cyanobakterien bzw. Algen (z.B. Spirulina, Grüne Spanalge (AFA) bzw. Chlorella). Watanabe et al. untersuchten verschiedene pflanzliche Quellen und fanden 2014, dass darunter die Nori-Algen die beste Vitamin B12-Quelle für Vegetarier seien. Nach Berechnung der Autoren könnte der tägliche Konsum von 4 g der getrockneten Meeresalge einen Vitaminbedarf in Höhe von 2,4 µg decken. Diese Aussage beruht auf Daten aus einer in-vitro-Verdauungssimulation, die Bioaktivität wurde im Tierversuch geprüft.

Vitamin B12 ist in fast allen Nahrungsmitteln tierischer Herkunft (auch Eiern und Milchprodukten) enthalten. Im Vergleich zu Kuhmilch (0,4 µg/100 g) enthält Muttermilch nur durchschnittlich 0,05 µg/100 g.

Cobalamingehalt einiger Lebensmittel
Lebensmittel Gehalt in µg/100 g
Kalbsleber 60
Spirulina maxima 57
Blutwurst 1
Schweineleber 40
Schweineniere 20
Hühnerleber 20
Nori (Porphyra tenera) 15
Hering 8,5
Sauerkraut 0
Rindfleisch (Muskel) 5,0
Käse 3,0
Hühnereigelb 2,0
Aal 1
Schweinefleisch (Muskel) 0,8
Kuhmilch 0,4
Sojasauce 0,3
Tempeh 0,3
Ingwer 0,16
Hühnereiweiß 0,1
Gemüse 0,01
Kabeljau 0,5–0,8
Makrele 9
Thunfisch 4,3

Die Angaben in der Tabelle entsprechen nicht dem Gehalt des vom menschlichen Organismus verwendbaren Vitamins der Lebensmittel. Vor allem der Bestandteil in unvergorenen pflanzlichen Lebensmitteln wie Spirulina ist eher auf „Pseudovitamin B12“ zurückzuführen, das bei Säugetieren nahezu keine biologische Wirksamkeit besitzt.

Bedarf

Methylcobalamin

Der tägliche Mindestbedarf, der im Vergleich zu den meisten anderen Vitaminen viel geringer ist, beträgt nur ca. 3 µg (Mikrogramm) für einen Erwachsenen. Für die ersten vier Lebensmonate wird der Vitamin-B12-Bedarf auf 0,4 µg pro Tag geschätzt, Säuglinge zwischen dem 4. und 12. Lebensmonat benötigen 0,8 µg pro Tag. Bei Kindern steigt der Bedarf mit dem Alter von 1,0 µg (1 Jahr) bis auf 3,0 µg (13 bis unter 15 Jahre). Bei Schwangeren und Stillenden wird ein erhöhter Bedarf von 3,5–4 µg angenommen.

Die biologische Halbwertszeit des Vitamins B12 beträgt 450–750 Tage. Das Vitamin wird ständig mit Gallensäuren in den Dünndarm abgegeben und an dessen Ende – dem Ileum – mithilfe des intrinsischen Faktors wieder aufgenommen. Der Bedarf ergibt sich also aus den Mengen, die im Ileum nicht wieder rückresorbiert werden konnten, abzüglich der Mengen, die möglicherweise schon dort durch Mikroorganismen produziert werden. Falls es zur Störung bei der Bildung des intrinsischen Faktors kommt, kann das Vitamin gar nicht mehr aufgenommen oder rückresorbiert werden, wodurch sich die Speicher im Organismus schnell leeren. Die meisten Fälle von Mangel an Vitamin B12 werden durch Störungen bei der Bildung des intrinsischen Faktors verursacht.

Gesunde Erwachsene speichern in ihrer Leber 2000–5000 µg Vitamin B12. Das gefüllte Depot reicht aus, um eine Unterversorgung über mehrere Jahre hinweg auszugleichen. Anders ist die Situation bei Säuglingen; diese verfügen über wesentlich geringere Reserven. Die Leber eines gut ernährten Neugeborenen enthält nur 25–30 µg des Vitamins. Gestillte Kinder von Frauen, die sich vegan ernähren und deren Muttermilch arm an Vitamin B12 ist, entwickeln ohne Zufütterung tierischer Lebensmittel meist im zweiten Lebenshalbjahr Symptome eines Mangels. Die bei vegetarischer Ernährungsweise typischerweise hohe Folsäurezufuhr vermag die hämatologischen Symptome einer Vitamin-B12-Unterversorgung zu überdecken, so dass der Mangel bis zum Auftreten neurologischer Symptome unentdeckt bleibt.

Mangelerscheinungen

Bei einem Mangel an Vitamin B12 kann es zur perniziösen Anämie (Perniziosa), einer Erkrankung des Blutbildes, und zur funikulären Myelose kommen. In den letzten Jahren mehrten sich zudem die Hinweise auf einen möglichen Zusammenhang zwischen einem Vitamin-B12-Mangel und anderen Krankheitsbildern wie z. B. Demenz und Neuropathien. Grundsätzlich sind niedrige Vitamin-B12-Konzentrationen im Blutserum bei älteren Menschen häufiger zu beobachten.

Ein Mangel kann durch unzureichende Zufuhr mit der Nahrung oder durch unzureichende Resorption verursacht werden. Bei mangelhafter Aufnahmefähigkeit im Magen-Darm-Trakt fehlt dem Organismus im Magensaft der intrinsische Faktor, ein Glykoprotein, das von den Belegzellen des Magens produziert wird und für die Vitamin-B12-Aufnahme unabdingbar ist. Der intrinsische Faktor bindet Cobalamin in einem vor Verdauungsenzymen geschützten Komplex und ermöglicht so den Transport in die Darmzellen, von wo aus Vitamin B12 über Bindung an weitere Proteine (Transcobalamine) in die äußeren Gewebe gelangt. Auch eine Störung bei der Aufnahme im terminalen Ileum kann zu einem Mangel führen.

Die ersten Anzeichen von Vitamin-B12-Unterversorgung bei erwachsenen Personen können Kribbeln und Kältegefühl in Händen und Füßen, Erschöpfung und Schwächegefühl, Konzentrationsstörungen und sogar Psychosen sein.

Typische Folgen eines Vitamin-B12-Mangels sind:

Vitamin B12, gebunden an das aus den Belegzellen des Magens stammende Glykoprotein intrinsischer Faktor, wird physiologisch im terminalen Ileum absorbiert. Nach einer Magenresektion oder bei einer Autoimmungastritis (A-Gastritis), bei der sich die Immunreaktion gegen die den intrinsischen Faktor bildenden Belegzellen (=Parietalzellen) richtet, ist daher die Aufnahme des Vitamin B12 – zumindest bei normalem Angebot – kaum möglich, so dass sich in der Folge ein Vitamin-B12-Mangel ausbilden kann. Auch bei einer schweren Entzündung des Ileums, insbesondere dem Morbus Crohn (= Ileitis terminalis), aber auch anderen intestinalen Erkrankungen mit Malabsorptionssyndrom, oder nach Resektionen des terminalen Ileum bzw. des Magens, kommt es typischerweise zu einem Vitamin-B12-Mangel.

In diesen Fällen ist eine regelmäßige Substitution von Vitamin B12 erforderlich, wobei diese jedoch unter Umgehung des Magen-Darm-Traktes in Form von intramuskulärer, subcutaner oder selten auch intravenöser Injektion erfolgen sollte, da entweder der fehlende intrinsic factor oder das fehlende bzw. stark gestörte Ileum die Aufnahme des oral zugeführten Vitamin B12 weitgehend verhindern würde. Nur bei Gabe hoher Dosen wird Vitamin B12 auch unspezifisch aufgenommen. Dabei ist jedoch die Resorptionsquote nicht vorhersehbar und daher ist eine orale Vitamin-B12-Substitution in diesen Fällen im Allgemeinen ungenügend.

Das erste wirksame Präparat zur Behandlung der perniziösen Anämie, das in den 1930er Jahren entwickelte Campolon, beruhte auf gereinigten Extrakten aus Lebern von Schlachttieren und enthielt Vitamin B12 als Hauptbestandteil. Es löste die zuvor praktizierte Leberdiät ab, bei der die Patienten täglich rohe Leber oder daraus hergestellte Speisen zu sich nehmen mussten.

Seit der Jahrtausendwende wird zur Bestimmung des Cobalamin-Spiegels im Blut normalerweise ein CBLA-Assay durchgeführt (competitive-binding luminescence assay), der frühere mikrobiologische und Radioisotopen-Dilutions-Assays abgelöst hat. Dieser wird von drei Herstellern angeboten. Klinische Serien zeigen, dass alle drei Assays eine hohe Rate falsch-negativer Ergebnisse (zwischen 22 und 35 %) produzieren, d.h. in einem von drei bis vier Fällen wird statt eines Cobalamin-Mangels fälschlicherweise ein Normalspiegel ermittelt. Allerdings liegen bisher nur kleine Serien vor.

Test auf Vitamin-B12-Mangel

Ein latenter Vitamin-B12-Mangel verändert u.a. vier im Blut messbare Biomarker mit Fortschreiten des Mangelzustands. Der bei dauerhafter Vitamin-B12-Unterversorgung sensitivste und als erster auffällig werdende Laborwert ist hierbei der Wert für Holotranscobalamin (Holo-TC) im Serum. Ist nur der Holo-TC-Wert verringert, so treten in diesem Stadium noch keine klinischen oder hämatologischen Symptome auf. Die Feststellung eines Vitamin-B12-Mangels in diesem Stadium erlaubt eine Substitutionstherapie, bevor irreversible neurologische Schädigungen auftreten.

Bei einem fortschreitenden Mangel können auch erhöhte Homocysteinwerte sowie erhöhte Werte für die Methylmalonsäure (MMA) auftreten. Diese Werte müssen daher in der Regel erst bei Auffälligkeit des Holo-TC-Wertes oder bei anderweitigem Verdacht auf Vitamin-B12-Mangel (bspw. bei erhöhtem Kreatinin) abgeprüft werden. Der Gesamt-Vitamin-B12-Spiegel im Serum ist oft der zuletzt abfallende und dazu relativ unspezifische und unsensitive Bio-Marker zur Feststellung einer latenten Vitamin-B12-Mangelversorgung, demzufolge ist die Aussagekraft dieses Parameters zur frühzeitigen Feststellung eines Vitamin-B12-Mangels limitiert.

Überdosierung

Therapeutische – meist intravenöse – Überdosen werden mit lokalen allergischen Beschwerden sowie einer Form der Akne (Acne medicamentosa) in Verbindung gebracht.

Weitere Verwendung

Gegengift

Hydroxycobalamin ist ein Antidot bei Vergiftungen durch Cyanide bzw. Blausäure. Cyanidvergiftungen kommen hauptsächlich im Rahmen von Kunststoffbränden vor. Weitere Ursachen können die versehentliche oder absichtliche Einnahme, das Einatmen oder ein Hautkontakt bei Industrieunfällen sein.

Die klinische Symptomatik Koma, Bradykardie und Hypotonie von Rauchgasexponierten im Rahmen eines Brandes sollte an eine Cyanidintoxikation denken lassen. Wie Kohlenmonoxid und Nitrose Gase ist auch Blausäure im Rahmen der Brandbekämpfung messbar und erhärtet den Verdacht auf eine Intoxikation. Die Therapie mit 4-Dimethylaminophenol (4-DMAP) ist bei Rauchgasexponierten zu meiden, da dies als Met-Hämoglobinbildner die Oxigenierung negativ beeinflusst.

Unter dem Handelsnamen Cyanokit erhielt die Firma Merck KGaA am 29. November 2007 für Hydroxocobalamin über das zentralisierte Verfahren von der Europäischen Kommission die Marktzulassung zur Behandlung erwiesener oder vermuteter Cyanidvergiftung bei Erwachsenen und Kindern. Hydroxocobalamin ist eine Form von Vitamin B12, das Cyanid-Ionen bindet. Dabei entsteht Cyanocobalamin, das über die Nieren mit dem Urin ausgeschieden wird. So wird die Bindung des Cyanids an die Cytochrom-c-Oxidase verhindert. Die Anfangsdosis für Cyanokit bei Erwachsenen liegt bei 5 g des Wirkstoffes, die als intravenöse Infusion zu verabreichen ist. In Abhängigkeit von der Schwere der Vergiftung und der klinischen Reaktion kann eine zweite Dosis von 5 g bis zu einer Gesamtdosis von 10 g verabreicht werden.

Das Risiko-Nutzen-Verhältnis im Rahmen der Behandlung der Zyanidvergiftung mit Hydroxocobalamin ist gut. Als häufige Nebenwirkung kommt es zu einer harmlosen ca. eine Woche andauernden Rotfärbung der Haut und des Urins, sowie zu einem leichten Blutdruckanstieg.

Topische Anwendung auf der Haut

Cyanocobalamin wird alternativmedizinisch zur Behandlung des Atopischen Ekzems (Neurodermitis) und der Schuppenflechte (Psoriasis) eingesetzt. Die Wirkung wird mit den Ergebnissen kleinerer klinischer Studien begründet, in denen eine Salbe mit 0,07 % Vitamin-B12 (Cyanocobalamin) in einer Avocadoöl-Salbengrundlage untersucht wurde.

Es wird vermutet, dass die in den Studien beobachtete Wirkung darauf zurückzuführen ist, dass Cyanocobalamin die Fähigkeit besitzt, Stickstoffmonoxid zu binden, welches bei den symptomatischen Hautveränderungen in erhöhter Konzentration auftrete und zellschädigend wirke.

Seit März 2010 darf das Produkt nicht mehr unter dem Namen Regividerm vertrieben werden, es heißt nun Mavena B12 Salbe.

Trenner
Basierend auf einem Artikel in Wikipedia.de
Hinweis zu Gesundheitsthemen
Dieser Artikel behandelt ein Gesundheitsthema. Er dient nicht der Selbstdiagnose und ersetzt nicht eine Diagnose durch einen Arzt. Bitte hierzu den Hinweis zu Gesundheitsthemen beachten!

Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 24.01. 2024