Fastprimzahl
Eine -Fastprimzahl
oder auch Fastprimzahl
-ter
Ordnung ist eine natürliche
Zahl, deren Primfaktorzerlegung
aus genau
Primzahlen
besteht, wobei mehrfache Primteiler entsprechend oft gezählt werden. Da alle
natürlichen Zahlen aus Primfaktoren zusammengesetzt
sind, ist jede natürliche Zahl zugleich auch eine Fastprimzahl. Fastprimzahlen
zweiter Ordnung nennt man auch Semiprimzahlen. Fastprimzahlen bewegen
sich zwischen den Polen der unteilbaren Primzahlen und der maximal teilbaren
hochzusammengesetzten
Zahlen und schließen dabei beide mit ein.
Der Norweger Viggo Brun führte den Begriff um 1915 zur Verallgemeinerung von Primzahlen ein, um einen neuen Ansatz für ungelöste Primzahlprobleme zu finden.
Definition
Sei
und
mit Primzahlen
.
Dann heißt
Fastprimzahl
-ter
Ordnung, wobei
gilt. Die Zahlenfolge
für ein festes
wird auch mit
bezeichnet.
Die Wohldefiniertheit folgt aus der Eindeutigkeit der Primfaktorzerlegung für
alle natürlichen Zahlen.
Dieses Konzept kann problemlos auf die ganzen Zahlen und beliebige ZPE-Ringe verallgemeinert werden.
Beispiele und Werte
Beispiele:
ist eine Fastprimzahl erster Ordnung („Primzahl“).
ist eine Fastprimzahl zweiter Ordnung („Semiprimzahl“).
ist eine Fastprimzahl vierter Ordnung.
ist eine Fastprimzahl zehnter Ordnung.
ist eine Fastprimzahl zwanzigster Ordnung.
1. Ordnung | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | … | Folge ![]() |
2. Ordnung | 4 | 6 | 9 | 10 | 14 | 15 | 21 | 22 | 25 | 26 | 33 | 34 | … | Folge ![]() |
3. Ordnung | 8 | 12 | 18 | 20 | 27 | 28 | 30 | 42 | 44 | 45 | 50 | 52 | … | Folge ![]() |
4. Ordnung | 16 | 24 | 36 | 40 | 54 | 56 | 60 | 81 | 84 | 88 | 90 | 100 | … | Folge ![]() |
5. Ordnung | 32 | 48 | 72 | 80 | 108 | 112 | 120 | 162 | 168 | 176 | 180 | 200 | … | Folge ![]() |
6. Ordnung | 64 | 96 | 144 | 160 | 216 | 224 | 240 | 324 | 336 | 352 | 360 | 400 | … | Folge ![]() |
7. Ordnung | 128 | 192 | 288 | 320 | 432 | 448 | 480 | 648 | 672 | 704 | 720 | 800 | … | Folge ![]() |
8. Ordnung | 256 | 384 | 576 | 640 | 864 | 896 | 960 | 1296 | 1344 | 1408 | 1440 | 1600 | … | Folge ![]() |
9. Ordnung | 512 | 768 | 1152 | 1280 | 1728 | 1792 | 1920 | 2592 | 2688 | 2816 | 2880 | 3200 | … | Folge ![]() |
10. Ordnung | 1024 | 1536 | 2304 | 2560 | 3456 | 3584 | 3840 | 5184 | 5376 | 5632 | 5760 | 6400 | … | Folge ![]() |
11. Ordnung | 2048 | 3072 | 4608 | 5120 | 6912 | 7168 | 7680 | 10368 | 10752 | 11264 | 11520 | 12800 | … | Folge ![]() |
12. Ordnung | 4096 | 6144 | 9216 | 10240 | 13824 | 14336 | 15360 | 20736 | 21504 | 22528 | 23040 | 25600 | … | Folge ![]() |
13. Ordnung | 8192 | 12288 | 18432 | 20480 | 27648 | 28672 | 30720 | 41472 | 43008 | 45056 | 46080 | 51200 | … | Folge ![]() |
14. Ordnung | 16384 | 24576 | 36864 | 40960 | 55296 | 57344 | 61440 | 82944 | 86016 | 90112 | 92160 | 102400 | … | Folge ![]() |
15. Ordnung | 32768 | 49152 | 73728 | 81920 | 110592 | 114688 | 122880 | 165888 | 172032 | 180224 | 184320 | 204800 | … | Folge ![]() |
16. Ordnung | 65536 | 98304 | 147456 | 163840 | 221184 | 229376 | 245760 | 331776 | 344064 | 360448 | 368640 | 409600 | … | Folge ![]() |
17. Ordnung | 131072 | 196608 | 294912 | 327680 | 442368 | 458752 | 491520 | 663552 | 688128 | 720896 | 737280 | 819200 | … | Folge ![]() |
18. Ordnung | 262144 | 393216 | 589824 | 655360 | 884736 | 917504 | 983040 | 1327104 | 1376256 | 1441792 | 1474560 | 1638400 | … | Folge ![]() |
19. Ordnung | 524288 | 786432 | 1179648 | 1310720 | 1769472 | 1835008 | 1966080 | 2654208 | 2752512 | 2883584 | 2949120 | 3276800 | … | Folge ![]() |
20. Ordnung | 1048576 | 1572864 | 2359296 | 2621440 | 3538944 | 3670016 | 3932160 | 5308416 | 5505024 | 5767168 | 5898240 | 6553600 | … | Folge ![]() |
Eigenschaften
- Jede Primzahl ist eine Fastprimzahl der Ordnung 1, jede zusammengesetzte Zahl ist eine Fastprimzahl der Ordnung 2 oder höher. Fastprimzahlen dritter Ordnung, sofern diese aus 3 verschiedenen Primfaktoren bestehen, nennt man auch sphenische Zahlen.
- Die Vereinigung der
bilden eine Zerlegung der natürlichen Zahlen.
- Jede Fastprimzahl
-ter Ordnung ist das Produkt von Fastprimzahlen der Ordnungen
mit
, z.B.: Das Produkt der 3-Fastprimzahl 12 und der 4-Fastprimzahl 40 ergibt die 7-Fastprimzahl 480. Für
gibt es
solcher möglichen Zerlegungen, wobei
die Stirling-Zahlen zweiter Art bezeichnet.
- Da es für die Null keine mögliche
Primfaktorzerlegung gibt, ist sie keine Fastprimzahl
-ter Ordnung.
- Der Eins wird das leere Produkt als Primfaktorzerlegung zugewiesen. Entsprechend kann sie definitionskonform als Fastprimzahl 0-ter Ordnung bezeichnet werden.
- Sei
die Anzahl der positiven ganzen Zahlen kleiner gleich
mit genau
Primteilern (die nicht unbedingt verschieden sein müssen). Dann gilt:
- Jede genügend große gerade Zahl lässt sich als die Summe einer Primzahl
und einer Fastprimzahl zweiter Ordnung darstellen.
Diese Aussage hat Ähnlichkeit mit der Goldbachschen Vermutung, wurde 1978 von Chen Jingrun bewiesen und nennt sich Satz von Chen. - Es gibt unendlich viele Primzahlen, sodass
eine 2-Fastprimzahl ist.
Diese Aussage hat Ähnlichkeit mit der Vermutung über Primzahlzwillinge und wurde ebenfalls von Chen bewiesen.
Anwendungen
Fastprimzahlen zweiter Ordnung, also das Produkt zweier Primzahlen finden in der Kryptographie Anwendung.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 29.08. 2022