Gell-Mann-Matrizen
Die Gell-Mann-Matrizen, benannt nach Murray
Gell-Mann, sind eine mögliche Darstellung der infinitesimalen
Generatoren der
Diese Gruppe hat acht hermitesche Generatoren, die man als mit schreiben kann. Sie erfüllen die Kommutatorrelation (siehe: Lie-Algebra)
(wobei die Einsteinsche Summenkonvention verwendet wurde). Die werden als Strukturkonstanten bezeichnet und sind komplett-antisymmetrisch bezüglich Vertauschung der Indizes. Für die SU(3) haben sie die Werte:
Jeden Satz von Matrizen, die die Kommutatorrelation erfüllen, kann man als Generatoren der Gruppe verwenden.
Die Gell-Mann-Matrizen sind ein Standardsatz solcher Matrizen. Mit den obigen Generatoren sind sie (analog zu den Pauli-Matrizen) verknüpft durch:
Sie sind als 3×3-Matrizen gewählt und haben die Form:
Bei der SU(2) hat man anstelle der acht -Matrizen die drei Pauli-Matrizen.
Die -Matrizen haben folgende Eigenschaften:
- Sie sind hermitesch, haben also nur reelle Eigenwerte.
- Sie sind spurlos, das heißt .
- Sie sind orthogonal bezüglich des Frobenius-Skalarprodukts, das heißt .
Anwendung finden sie z.B. bei Berechnungen in der Quantenchromodynamik, die durch eine SU(3)-Theorie beschrieben wird. Daraus kann man auch die Wahl als 3×3-Matrizen verstehen, da die Matrizen auf Farbladungstriplets wirken sollen.
Siehe auch
- Standardmodell (Eichgruppe: SU(3)×SU(2)×U(1))
- Quarks
Literatur
- Howard Georgi: Lie algebras in particle physics. ISBN 0-7382-0233-9
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 03.02. 2021