Polarisation (Elektrizität)
Physikalische Größe | |||||||
---|---|---|---|---|---|---|---|
Name | Polarisation | ||||||
Formelzeichen | |||||||
|
Polarisation (oder dielektrische Polarisation) ist eine physikalische Größe aus der Elektrodynamik, die die Stärke des Dipolmoments in einem dielektrischen Material kennzeichnet.
Auch bei nichtleitenden Materialien erfolgt durch Anlegen eines äußeren elektrischen Feldes eine Verschiebung von elektrischen Ladungen über kurze Distanzen in der Größenordnung eines Atomabstandes. Bei elektrischen Leitern kann diese Verschiebung über erheblich längere Strecken erfolgen und wird Influenz genannt. In beiden Fällen kann an den Oberflächen eine makroskopische Ladungsverteilung (Polarisationsladungen oder gebundene Ladungen) gemessen werden.
Mechanismen

Jegliche Materie ist aus geladenen Bausteinen höchst unterschiedlicher Masse aufgebaut. In Nichtleitern sind diese Bausteine an ihre Umgebung gebunden, können sich aber trotzdem verschiedenartig bewegen:
- Mit Gleichspannung können Dipolmoleküle dauerhaft orientiert werden. Anwendung im Elektretmikrofon.
- Bei sehr tiefen Frequenzen (< 103 Hz) können
gelegentlich Ionen den Platz tauschen und bleiben auch nach Abschalten des
externen Feldes dort (dielektrische
Absorption). Dabei wird Energie verbraucht, weshalb
hohe Werte annimmt. Wegen der hohen Masse der Ionen können diese schnellen Feldänderungen nicht folgen und der Effekt verschwindet oberhalb von 105 Hz.
- Mit steigender Frequenz werden bei etwa 1010 Hz Dipolmoleküle zum periodischen Umklappen angeregt – sofern sie vorhanden sind und nicht durch ein Kristallgitter wie Eis festgehalten werden. Dabei kommt es beispielsweise im Mikrowellenherd zwischen benachbarten Wassermolekülen zu enormen Reibungsverlusten.
- Moleküle ohne Dipolmoment können auf diese Weise nicht erwärmt werden und eignen sich deshalb als Isoliermaterial in Hochfrequenzkondensatoren. In diesen Materialien kann auch keine Resonanz bei 1010 Hz gemessen werden.
- Bei 1012 Hz schwingen die Ionen um ihre Ruhelagen im
Molekül. Weil dabei die Auslenkungen auf Bruchteile eines Atomdurchmessers
begrenzt sind, ist die maximal mögliche Polarisation
recht klein. Der kurvenförmige Verlauf ist ein charakteristisches Zeichen für Resonanz und die begleitende Phasenverschiebung. Resonanz ist ausnahmslos mit Absorption verbunden.
- In der Umgebung des sichtbaren Lichtes bei 1015 Hz beobachtet man Resonanzen der Elektronen im elektrischen Feld des Atomkerns. Das führt zur Richtungsänderung von Lichtwellen in Glas (Brechungsindex) und zu Farbfiltern.
- Im UV-Gebiet bei Frequenzen über 1016 Hz beobachtet man keine elektrischen Polarisationseffekte mehr.
Verschiebungspolarisation

Elektronenpolarisation: Bei unpolaren Molekülen wird die Elektronenwolke, die den Atomkern umgibt, durch das angelegte externe elektrische Feld gegen den Atomrumpf verschoben. Im Inneren des Körpers entsteht so eine makroskopische, inhomogene Ladungsverteilung. Sobald das externe Feld verschwindet, sind die Orte der Ladungsschwerpunkte wieder identisch. Handelt es sich um ein elektrisches Wechselfeld, entsteht durch das Hin- und Herschwingen des Kerns keine Wärmeenergie.
Orientierungspolarisation

rot: negative Teilladung
blau: positive Teilladung
grün: gerichteter Dipol
In einigen Molekülsorten wie Wasser sind die Schwerpunkte der positiven bzw. negativen elektrischen Ladungen deutlich voneinander getrennt. Man spricht dann von Dipolmolekülen bzw. permanenten Dipolen, deren Richtungen im Grundzustand statistisch verteilt sind. Eine technisch bedeutsame Ausnahme sind die Elektrete, die permanent ausgerichtete elektrische Dipole enthalten.
Durch die Einwirkung eines externen elektrischen Feldes werden diese Dipole immer besser gleichgerichtet, je stärker dieses Feld ist. Diese Polarisierungsart erfolgt wegen der großen zu bewegenden Massen langsam, ferner ist sie temperaturabhängig. Eine Temperaturerhöhung stört die gleiche Ausrichtung immer mehr. Bei zunehmender Frequenz des elektrischen Feldes verschwindet diese Polarisation als Erstes. Dagegen ist die Verschiebungspolarisation nur schwach von der Temperatur abhängig.
Ionenpolarisation
Durch das elektrostatische Feld werden die positiven und negativen Ionen eines vorher neutralen Moleküls innerhalb des Ionengitters gegeneinander verschoben, so dass ein Dipol entsteht. Beispiele sind anorganische Isolierstoffe oder Kondensatorkeramik.
Piezoelektrizität
In manchen Dielektrika kann man durch mechanische Belastung elektrische Polarisation erzeugen. Anwendungen sind Piezofeuerzeug, Kraftsensoren und – weil der Effekt umkehrbar ist – Quarzoszillatoren.
Raumladungspolarisation/Grenzflächenpolarisation
Hierbei geht man davon aus, dass in einem Dielektrikum freie Ladungsträger (positive+negative Ionen, Elektronen) vorhanden sind. Ohne äußeres Feld heben sich die einzelnen Ladungen auf, und das Dielektrikum wirkt nach außen elektrisch neutral. Nach Anlegen des äußeren Feldes bewegen sich Ladungsträger zur Elektrode entgegengesetzter Polarität. Es bildet sich ein „makroskopischer Dipol“. Quergrenzflächen können diese Wanderung behindern. Die Ladungstrennung innerhalb einer Schicht hat aber nach außen die gleiche Wirkung. Beispiel: Öl-Papier-Isolation, Einschlüsse im Dielektrikum
Quantitative Betrachtung
Die Polarisation bezeichnet das Vektorfeld,
das aus einem permanenten oder induzierten Dipolmoment in
einem dielektrischen Material
resultiert. Dabei ist der Polarisationsvektor
definiert als das Dipolmoment pro Volumen.
Die Abhängigkeit der Polarisation
vom elektrischen Feld
ist im Allgemeinen nichtlinear und anisotrop:
Die
sind Tensoren
-ter
Stufe,
ist die Vakuum-Dielektrizitätskonstante.
beschreibt die lineare
Suszeptibilität,
ist für den Pockels-Effekt
und
für den Kerr-Effekt verantwortlich.
In einem homogenen linearen isotropen
dielektrischen Medium
ist die Polarisation parallel und proportional zum elektrischen Feld :
wobei
die elektrische
Suszeptibilität des Mediums ist, d.h.
und
für
.
Wenn die Polarisation
nicht proportional zum elektrischen Feld
ist, dann wird das Medium nichtlinear genannt (siehe auch: nichtlineare Optik).
Wenn die Richtung von
nicht parallel zu der von
ist, wie das in vielen Kristallen der Fall ist, ist das Medium anisotrop
(siehe auch: Kristalloptik).
Die oben genannten Polarisationsarten summieren sich zu einer Gesamtpolarisation bzw. Gesamtsuszeptibilität auf:
Die einzelnen Suszeptibilitäten sind frequenzabhängig. Für niedrige Frequenzen tragen alle Teile bei. Bei höheren Frequenzen verschwindet zuerst die Orientierungspolarisation (die Moleküle können mit dem schnell wechselnden E-Feld nicht mehr mitrotieren, etwa ab Mikrowellenbereich), dann die ionische Polarisation (die Ionen können wegen ihrer Trägheit dem Feld nicht mehr folgen, etwa ab Infrarot-Bereich) und schließlich die elektronische Polarisation (etwa ab UV-Bereich), sodass die Gesamtsuszeptibilität im Höchstfrequenzbereich auf null absinkt.
Raumladungsdichte und Oberflächenladungsdichte
Ist die Polarisation überall gleich stark, gleichen sich die makroskopischen
Dipole aus und das Material ist elektrisch neutral. Verändert sich die
Polarisation mit dem Ort ist dies nicht mehr der Fall und man erhält eine Ladungsdichte
Dabei bezeichnet
den Nabla-Operator.
An Grenzflächen gibt es keine benachbarten Dipole, die die Ladung
ausgleichen. Man erhält deshalb eine Oberflächenladungsdichte
mit dem Normalenvektor
der Grenzfläche.
Siehe auch



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 01.06. 2021