Beweglichkeit (Physik)
Die Beweglichkeit  
bzw. Mobilität 
 
als physikalischer Begriff ist definiert über die konstante (stationäre) Geschwindigkeit 
 
welche ein Körper (asymptotisch) erreicht, wenn an ihm eine konstante Kraft 
 
angreift. 
Man spricht in diesem Zusammenhang von der Driftgeschwindigkeit 
. 
In der Elektrodynamik 
wird die Beweglichkeit in leicht abgewandelter Form und damit mit anderer 
Einheit definiert. Die Ladungsträgerbeweglichkeit  
bezeichnet den Zusammenhang zwischen der Driftgeschwindigkeit von Ladungsträgern 
und einem angelegten elektrischen 
Feld: 
Grundsätzlich ist es nur in dissipativen Systemen sinnvoll eine Mobilität einzuführen, also dort wo es Reibung und somit eine inelastische Streuung gibt. Ab einer bestimmten Geschwindigkeit gibt es ein Gleichgewicht zwischen äußerer Kraft und entgegengesetzt wirkender Reibungskraft, sodass die Bewegung stationär ist (allgemeiner: die mittlere Geschwindigkeit ist stationär).
Beweglichkeit in der Mechanik
Eine konstante an einem Körper angreifende Kraft  
bewirkt solange dessen Beschleunigung, bis die entgegengesetzte Reibungskraft 
(z.B. Luft- oder Gleitreibung) 
den gleichen Betrag hat. Dann ist die stationäre Geschwindigkeit 
 
erreicht und die effektive Beschleunigung beträgt null. Dies ist z. B. der 
Grund, warum ein in der Atmosphäre fallender Körper nicht beliebig schnell wird. 
Eine Ursache dieser Gesetzmäßigkeit ist die Abhängigkeit der Reibung von der 
Geschwindigkeit des Körpers. 
Die mechanische Beweglichkeit  
ist daher definiert als 
- . 
In der Mechanik hat die Beweglichkeit somit die Einheit s/kg. Historisch interessant ist, dass Aristoteles dieses Gesetz als grundlegend für seine Mechanik angenommen hat. Die heutige Mechanik hingegen beruht auf den Newtonschen Axiomen, aus denen das Gesetz hervorgeht.
Mobilität bei Stokes'scher Reibung
Ein Körper werde durch eine externe Kraft  
beschleunigt und durch Stokes'sche 
Reibung gebremst. Die Stokes'sche Reibungskraft ist 
; 
für die Bewegung eines kugelförmigen Teilchens in einem Fluid 
gilt 
, 
wobei 
 
der Teilchenradius, 
 
die dynamische Viskosität 
des Fluids und 
 
der Cunningham-Korrekturfaktor 
ist. 
Die resultierende Kraft setzt sich aus diesen beiden Beiträgen zusammen:
Im Gleichgewicht ist die resultierende Kraft und somit die Beschleunigung gleich Null und die stationäre Geschwindigkeit ist erreicht:
Die Beweglichkeit ist also
Mobilitätsdurchmesser
Die Beweglichkeit eines sich in einer Flüssigkeit bewegenden Körpers kann 
auch durch den mobilitätsäquivalenten Durchmesser bzw. Mobilitätsdurchmesser 
ausgedrückt werden. Dies ist der Durchmesser  
einer Kugel, welche diese Mobilität besitzt. Sein Wert ist nach dem stokesschen 
Gesetz 
, 
wobei der Cunningham-Korrekturfaktor 
 
angibt, ob das den Körper umgebende Fluid als Kontinuum aufgefasst werden kann, 
als freimolekular oder dazwischen. Ausschlaggebend ist dabei die mittlere Freie 
Weglänge der Fluidmoleküle 
 
und der Mobilitätsdurchmesser des Körpers 
. 
Die Konstanten , 
 
und 
 
wurden empirisch ermittelt und werden i.d.R. als allgemeingültig 
betrachtet. 
Anwendung findet diese Größe vor allem in der Aerosoltechnik, besonders für ultrafeine Partikel.
Beweglichkeit in der Elektrodynamik
In der Elektrodynamik wird die Beweglichkeit in leicht abgewandelter Form definiert. Die Ladungsträgermobilität (oder einfach Mobilität, speziell für Elektronen: Elektronenmobilität) bezeichnet den Zusammenhang zwischen einem angelegten elektrischen Feld und der Driftgeschwindigkeit von Ladungsträgern (Festkörper: Defekt-/Elektronen, Plasma: Elektronen/Ionen).
wobei  
die Einheit   
 
   hat. Gewöhnlich wird die Mobilität in cm2/(V·s) 
angegeben. 
Bei kleinen Feldstärken ist    
unabhängig von der Feldstärke, bei hohen Feldstärken allerdings nicht mehr. Das 
genaue Verhalten wird dabei wesentlich durch das Material beeinflusst, also z. 
B. dadurch, ob ein elektrischer Strom durch einen Festkörper oder ein Plasma 
fließt. Bei sehr großen Feldstärken erhöht sich in Festkörpern die mittlere 
Elektronengeschwindigkeit nicht mehr und erreicht die Sättigungsgeschwindigkeit 
. 
Für die Beweglichkeit von Ionen, siehe Ionenbeweglichkeit.
Zusammenhang mit Leitfähigkeit
Die elektrische 
Leitfähigkeit lässt sich mit der Beweglichkeit in Verbindung bringen. Für 
leitfähige Stoffe lautet die Materialgleichung, 
die die elektrische 
Stromdichte mit dem angelegten elektrischen Feld über die elektrische 
Leitfähigkeit  
verknüpft: 
Das zweite Gleichheitszeichen gilt unter Verwendung der obigen Definition der 
Beweglichkeit. Allgemein ist die Stromdichte als Ladungsdichte mal 
Geschwindigkeit definiert (   ist 
die Ladungsdichte = Ladung mal Ladungsträgerdichte): 
Somit kommt man durch Gleichsetzen auf den Zusammenhang zwischen Leitfähigkeit und Beweglichkeit:
- , 
wobei  
die elektrische 
Ladung (nicht notwendigerweise die Elementarladung) 
eines Ladungsträgers (z. B. Elektron, Loch, Ion, geladenes Molekül etc.)  und 
 
die Ladungsträgerdichte 
darstellen. In Metallen ändert sich die Ladungsträgerdichte mit der Temperatur 
wenig und die Leitfähigkeit ist von der temperaturabhängigen Mobilität bestimmt 
Die Leitfähigkeit eines Halbleiters setzt sich zusammen aus der 
Elektronendichte  
und deren Beweglichkeit 
 
sowie der Lochdichte 
 
und deren Beweglichkeit 
 
Bei Halbleitern ändert sich mit der Temperatur die Ladungsträgerdichte stark (exponentiell), dagegen ist die Temperaturabhängigkeit der Mobilität klein.
Mikroskopische Betrachtung
Ladungsträger bewegen sich in einem Gas oder Festkörper ohne ein elektrisches Feld in der Regel zufällig, d. h. die Driftgeschwindigkeit ist null. Bei Anwesenheit eines elektrischen Feldes bewegen sich die Ladungen dagegen mit einer effektiven Geschwindigkeit entlang des Feldes, die deutlich geringer als die mittlere Geschwindigkeit der einzelnen Ladungen ist.
Nach dem Drude-Modell ist die Driftgeschwindigkeit gleich
Daraus kann man die Mobilität direkt ablesen:
wobei  
Ladung, 
 
Masse, 
 
mittlere 
Stoßzeit (Zeit zwischen zwei Stößen). Die mittlere Stoßzeit lässt sich als 
Quotient aus mittlerer freier Weglänge und mittlerer Geschwindigkeit schreiben: 
Die mittlere Geschwindigkeit setzt sich aus mittlerer thermischer 
Geschwindigkeit  
und Driftgeschwindigkeit 
 
zusammen. Die Driftgeschwindigkeit ist bei nicht zu großen elektrischen 
Feldstärken viel kleiner als die thermische Geschwindigkeit, weswegen man sie 
vernachlässigen kann. 
Eine quantenmechanische Betrachtung nach 
Sommerfeld liefert 
ein ähnliches Ergebnis. Dort muss allerdings die Masse durch die effektive Masse (kann 
sich um mehrere Größenordnungen von der Elektronenmasse unterscheiden) ersetzt 
werden. Zudem muss die mittlere Stoßzeit für die Elektronen mit der Fermienergie 
eingesetzt werden. Zur Leitfähigkeit (in entarteten Systemen, wie Metallen und 
hochdotierten Halbleitern) tragen nämlich nur die Elektronen mit Energie im 
Bereich  
um die Fermienergie bei. 
Mobilität in Festkörpern
Bei Festkörpern hängt die Mobilität stark von der Anzahl von Störstellen und der Temperatur ab, sodass es schwierig ist Werte anzugeben. Es ist zu beachten, dass im Gegensatz zu einem einzigen Körper die Geschwindigkeit der vielen vorhandenen Ladungsträger statistisch verteilt ist. Die notwendige Reibungskraft, die eine konstante Beschleunigung verhindert, ist durch die Streuung an Fehlstellen im Kristall und an Phononen gegeben. Die mittlere freie Weglänge wird von diesen beiden Streumechanismen begrenzt. Die Elektronen untereinander streuen nur sehr selten und an den Gitteratomen eigentlich gar nicht. Näherungsweise lässt sich die Mobilität als Kombination von Effekten von Gitterschwingungen (Phononen) und von Störstellen durch die folgende Gleichung ausdrücken (Matthiessensche Regel):
- . 
Die Mobilität ist abhängig vom Material, der Störstellendichte, der Temperatur und der Feldstärke. Bei niedrigen Temperaturen streuen die Elektronen hauptsächlich mit Störstellen, bei höheren verstärkt mit Phononen (je höher die Temperatur, desto mehr Phononen sind angeregt).
Wie die quantenmechanische Betrachtung nach Sommerfeld zeigt, ist die Mobilität von der effektiven Masse abhängig. Dabei ist zu beachten, dass die effektive Masse im Allgemeinen ein Tensor, also richtungsabhängig ist. Somit ist bei einkristallinen Materialien die Beweglichkeit von der Kristallorientierung abhängig.
In Halbleitern ist die Mobilität zudem unterschiedlich für Elektronen im Leitungsband und Defektelektronen (= Löcher) im Valenzband. Elektronen haben meist kleinere effektive Massen als Löcher und somit eine höhere Mobilität. Falls einer der beiden Ladungsträger durch Dotierung dominiert, so ist die Leitfähigkeit des Halbleiters proportional zur Mobilität der Majoritätsladungsträger. Durch Dotierung eines hochreinen Halbleitermaterials (typischerweise Silizium) durch Fremdatome geeigneter Natur werden gezielt eine bestimmte Menge von beweglichen Ladungsträgern eingebracht, deren Mobilität jedoch verringert wird, da die Dotierungsatome Störstellen sind. Je nach Dotierungsmaterial entstehen Überschuss-Elektronen (n-Dotierung) oder Elektronenfehlstellen (p-Dotierung).
Ladungsträgermobilität einiger Stoffe
Abhängig von der Materialstruktur kann die Beweglichkeit stark variieren. Beispielsweise erreicht sie im Standardmaterial der Elektronik, dem Silicium (Si), nur mittlere Werte. Im Galliumarsenid (GaAs) dagegen ist sie wesentlich höher, mit der Folge, dass dieses Material weit höhere Arbeitsfrequenzen aus ihm erstellter Bauteile zulässt als Silicium, das aber zu ebenfalls höheren Materialkosten.
| Elektronen- und Löchermobilität verschiedener Materialien in cm2·V−1·s−1 bei 300 K | |||
|---|---|---|---|
| Material | Elektronen | Löcher | Anmerkungen | 
| organische Halbleiter | ≤ 10 | ||
| Rubren | 40 | höchste Beweglichkeit unter den organischen Halbleitern | |
| übliche Metalle | ≈ 50 | ||
| Silicium (kristallin, undotiert) | 1.400 | 450 | |
| Germanium | 3.900 | 1.900 | |
| Galliumarsenid | 9.200 | 400 | |
| Indiumantimonid | 77.000 | ||
| Kohlenstoff-Nanoröhrchen | 100.000 | ||
| Graphen | 10.000 | auf SiO2-Träger | |
| Graphen | 350.000 | bei 1,6 K; bisheriger Maximalwert | |
| Zweidimensionales Elektronengas | 35.000.000 | nahe dem absoluten Nullpunkt | |
Mobilität in der Gasphase
Mobilität wird für jeden Bestandteil der Gasphase einzeln definiert. Dies ist von besonderem Interesse in der Plasmaphysik. Die Definition lautet:
wobei  
- Ladung des Bestandteils, 
 
- Stoßfrequenz, 
 
- Masse. 
Der Zusammenhang zwischen der Mobilität und dem Diffusionskoeffizienten ist als Einstein-Gleichung bekannt:
wobei  
die Diffusionskonstante, 
 
die mittlere freie Weglänge, 
 
die Boltzmannkonstante 
und 
 
die Temperatur bezeichnen. 
Siehe auch

 Wikipedia.de
  
    Wikipedia.de

© biancahoegel.de
Datum der letzten Änderung: Jena, den: 16.12. 2023