Intervall (Mathematik)
Als Intervall wird in der Analysis,
der Ordnungstopologie
und verwandten Gebieten der Mathematik
eine „zusammenhängende“ Teilmenge
einer total
(oder linear) geordneten Trägermenge
(zum Beispiel der Menge der reellen
Zahlen )
bezeichnet. Ein (beschränktes) Intervall besteht aus allen Elementen
,
die man mit zwei begrenzenden Elementen der Trägermenge, der unteren
Grenze
und der oberen Grenze
des Intervalls, der Größe nach vergleichen kann und die im Sinne dieses
Vergleichs zwischen den Grenzen liegen. Dabei können die Grenzen des
Intervalls dem Intervall angehören (abgeschlossenes Intervall,
),
nicht angehören (offenes Intervall
)
oder teilweise angehören (halboffenes Intervall,
;
).
Zusammenhängend bedeutet hier: Wenn zwei Objekte in der Teilmenge enthalten
sind, dann sind auch alle Objekte, die (in der Trägermenge) dazwischen liegen,
darin enthalten. Die wichtigsten Beispiele für Trägermengen sind die Mengen der
reellen, der rationalen, der ganzen und der natürlichen Zahlen. In den genannten
Fällen und allgemeiner immer dann, wenn eine Differenz
zwischen zwei Elementen der Trägermenge erklärt ist, bezeichnet man die
Differenz zwischen der oberen und unteren Grenze des Intervalls ()
als Länge des Intervalls oder kurz Intervalllänge; für diese
Differenz ist auch die Bezeichnung Intervalldurchmesser geläufig. Wenn
ein arithmetisches
Mittel der Intervallgrenzen erklärt ist, wird dieses als
Intervallmittelpunkt bezeichnet.
Beispiele
- In der Menge der natürlichen Zahlen
In diesem Fall einer diskreten Menge sind die Elemente des Intervalls benachbart.
- In der Menge der reellen Zahlen
,
die Menge aller Zahlen zwischen 0 und 1, wobei die Endpunkte 0 und 1 mit eingeschlossen sind.
Triviale Beispiele von Intervallen sind die leere Menge und Mengen, die genau ein Element besitzen. Wenn man diese nicht einschließen möchte, dann spricht man von echten Intervallen.
Die Menge
kann auch als Teilmenge der Trägermenge der reellen Zahlen betrachtet werden. In
diesem Fall handelt es sich nicht um ein Intervall, da die Menge zum Beispiel
die zwischen 6 und 7 liegenden nichtnatürlichen Zahlen nicht enthält.
Die Trägermenge der reellen Zahlen spielt insofern eine Sonderrolle unter den genannten Trägermengen für Intervalle, als sie ordnungsvollständig ist (s.a. Dedekindscher Schnitt). Intervalle sind in diesem Fall genau die im Sinne der Topologie zusammenhängenden Teilmengen.
Bezeichnungs- und Schreibweisen
Ein Intervall kann (beidseitig) beschränkt oder – auch einseitig – unbeschränkt sein. Es ist durch seine untere und seine obere Intervallgrenze eindeutig bestimmt, wenn zusätzlich angegeben wird, ob diese Grenzen im Intervall enthalten sind.
Es gibt zwei verschiedene häufig verwendete Intervallschreibweisen:
- Bei der häufigeren der beiden verwendet man für Grenzen, die zum Intervall gehören, eckige Klammern und runde für Grenzen, die nicht zum Intervall gehören. Die eckigen Klammern entsprechen einem schwachen Ungleichheitszeichen ≤ . Die runden Klammern () entsprechen einem starken Ungleichheitszeichen < .
- Bei der anderen Schreibweise werden statt der runden Klammern nach außen gewendete (gespiegelte) eckige verwendet. Im Folgenden werden beide Schreibweisen gezeigt und der Mengenschreibweise gegenübergestellt:
Beschränkte Intervalle
Sei .
Ein beschränktes Intervall mit der unteren Grenze
und der oberen Grenze
ist abgeschlossen,
wenn es beide Grenzen
enthält, und offen,
wenn beide Grenzen nicht enthalten sind. Ein beschränktes Intervall heißt
halboffen, wenn es genau eine der beiden Intervallgrenzen enthält.
Abgeschlossenes Intervall
Das Intervall enthält sowohl
als auch
.
Ein Intervall ist genau dann kompakt, wenn es abgeschlossen und beschränkt ist.
Offenes Intervall
Das Intervall enthält weder
noch
.
Die Notation
ist die traditionell verwendete, während
auf Bourbaki
zurückgeht.
Halboffenes (genauer rechtsoffenes) Intervall
Das Intervall enthält ,
aber nicht
.
Halboffenes (genauer linksoffenes) Intervall
Das Intervall enthält nicht ,
wohl aber
.
Im Fall von
und
heißt
das offene Einheitsintervall und
das abgeschlossene Einheitsintervall.
Unbeschränkte Intervalle
Wenn auf einer Seite die Intervallgrenze fehlt, es dort also keine Schranke
geben soll, spricht man von einem (auf dieser Seite) unbeschränkten Intervall.
Meist werden hierfür die bekannten Symbole
und
als „Ersatz“-Intervallgrenzen verwendet, die selbst nie
zum Intervall gehören (deshalb die Schreibung mit runder Klammer). In mancher
Literatur werden beschränkte Intervalle auch als eigentlich,
unbeschränkte als uneigentlich bezeichnet.
- Linksseitig unendliches abgeschlossenes Intervall
Es enthält alle Zahlen, die kleiner oder gleich
sind.
- Linksseitig unendliches offenes Intervall
Es enthält alle Zahlen, die kleiner als
sind.
- Rechtsseitig unendliches abgeschlossenes Intervall
Es enthält alle Zahlen, die größer oder gleich
sind.
- Rechtsseitig unendliches offenes Intervall
Es enthält alle Zahlen, die größer als
sind.
- Beidseitig unendliches offenes (und zugleich abgeschlossenes) Intervall
Es enthält alle Zahlen zwischen
und
.
Dies entspricht der gesamten Menge der reellen Zahlen (
).
Bei obiger Definition wird übrigens nicht
gefordert, sodass für
jedes Intervall leer ist. Daneben existieren auch je nach Anwendung
Definitionen, die solche Intervalle nicht erlauben oder im Falle
einfach die Grenzen vertauschen.
Zur Vermeidung von Verwechslungen mit dem Dezimalkomma wird als Trennzeichen auch das Semikolon (;), selten auch ein senkrechter Strich (|) verwendet, z.B.
n-dimensionale Intervalle
Definition
Analog definiert man für
im n-dimensionalen Raum
ein beliebiges n-dimensionales Intervall (Quader)
mit beliebigen Intervallen
Beschränkte n-dimensionale Intervalle
Es seien nun
mit
und
,
dann gilt speziell:
- Abgeschlossenes Intervall
- Offenes Intervall
- Halboffenes (genauer rechtsoffenes) Intervall
- Halboffenes (genauer linksoffenes) Intervall
Verallgemeinerung
In der Topologie sind reelle Intervalle Beispiele für zusammenhängende Mengen, tatsächlich ist eine Teilmenge der reellen Zahlen sogar genau dann zusammenhängend, wenn sie ein Intervall ist. Offene Intervalle sind offene Mengen und abgeschlossene Intervalle sind abgeschlossene Mengen. Halboffene Intervalle sind weder offen noch abgeschlossen. Abgeschlossene beschränkte Intervalle sind kompakt.
Alle hier für die reellen
Zahlen
gemachten Schreibweisen lassen sich direkt auf beliebige total geordnete
Mengen übertragen.
Siehe auch
Literatur
- Harro Heuser: Lehrbuch der Analysis. Teil 1. 5. Auflage. Teubner-Verlag, 1988, ISBN 3-519-42221-2.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 12.06. 2021