Sulfate

Sulfat-Ion in der klassischen Schreibweise
Schwefelsäure-
monoester

Sulfate sind Salze oder Ester der Schwefelsäure. Die Salze enthalten das Sulfat-Anion [SO4]2− bzw. das Hydrogensulfat-Anion [HSO4]. Die Ester der Schwefelsäure haben die allgemeine Formel R−O−SO2−O−R', dabei sind R und/oder R' organische Reste.

Nomenklatur

Primäre und sekundäre Sulfate

Die Salze der zweibasigen Säure Schwefelsäure (H2SO4) lassen sich in Sulfate und Hydrogensulfate einteilen (auch als primäre und sekundäre Sulfate bezeichnet). Bei einwertigen Kationen MI gelten die Summenformeln MIHSO4 und MI2SO4:

  Hydrogensulfate (primäre Sulfate) sekundäre Sulfate
Synonyme saure Sulfate
Hydrogensulfate
Bisulfate
neutrale Sulfate
normale Sulfate
Beispiele Natriumhydrogensulfat, NaHSO4
Calciumhydrogensulfat, Ca(HSO4)2
Natriumsulfat, Na2SO4
Calciumsulfat, CaSO4

Alaune und Vitriole

Alaune sind Doppelsalze aus ein- und dreiwertigen Kationen mit der allgemeinen Summenformel MIMIII(SO4)2 · 12 H2O, Hauptvertreter der Gruppe der Alaune ist das Kaliumaluminiumsulfat (Kalialaun). Vitriole hingegen sind die kristallwasserhaltigen Sulfate zweiwertiger Nebengruppen-Metalle (Kupfervitriol, Eisenvitriol etc.).

Sulfatkomplexe

Sulfatgruppen können in Komplexen als Liganden auftreten. Die Liganden werden in diesem Fall als [Tetraoxosulfato(−2)] oder [Sulfato(−2)] bezeichnet. Nach Empfehlungen zur Nomenklatur tragen auch Sulfitgruppen (SO3)2− das Suffix -sulfat und werden als Trioxosulfat bzw. [Trioxosulfat(IV)] bezeichnet.

Ester der Schwefelsäure

CuSO4 · 5 H2O-Kristall

Schwefelsäureester werden gelegentlich auch als Sulfate bezeichnet, da die Namen häufig auf -sulfat enden. Einfache Ester wie Dimethylsulfat sind kräftige Alkylierungsmittel. Ester mit längeren Kohlenwasserstoffresten sowie Sulfonsäure-Salze sind in der Regel Tenside. Zu diesen Estern gehören auch die anwendungstechnisch wichtigen Fettalkoholsulfate.

Eigenschaften

Allgemeines

Die meisten Sulfate sind in Wasser löslich. Ausnahmen bilden die wenig oder schwerlöslichen Sulfate der ErdalkalimetalleCalcium, Strontium und Barium sowie Blei(II)-sulfat.

Besonders die Alkali- und Erdalkalisulfate sind thermisch äußerst stabil. Sulfate dreiwertiger Metallkationen zersetzen sich in der Wärme zu den entsprechenden Oxidenund Schwefeltrioxid:

\mathrm{M^{III}_2(SO_4)_3\ \longrightarrow\ M^{III}_2O_3\ +\ 3\ SO_3}

Hydrogensulfate sind als Salze der Alkalimetalle bekannt. Sie sind löslich in Wasser. Beim Erhitzen dieser Salze bilden sich Disulfate, Salze der Dischwefelsäure.

Anionen und pH-Wert

Schwefelsäure ist eine starke zweiprotonige Säure. In einer einmolaren, wässrigen Lösung der Säure liegen so gut wie keine H2SO4-Moleküle, sondern im Wesentlichen HSO4-Ionen vor. Nur gut 1 % der HSO4-Ionen deprotonieren zu SO42−. Das Hydrogensulfat-Anion (HSO4) kann sowohl als Säureals auch als Base wirken, es ist also amphoter. Der pKS-Wert des Hydrogensulfat-Ions liegt bei 1,89.

Löst man ein Hydrogensulfatsalz in Wasser, bildet sich in einer Gleichgewichtsreaktion eine Mischung von Hydrogensulfat- und Sulfationen. Daher kann man Hydrogensulfate als mittelstarke Säure einsetzen, wobei die Säurestärke erheblich höher ist als die von Essigsäure (pKS = 4,76). Aufgrund dieser Eigenschaften können Hydrogensulfate auch in Pufferlösungen verwendet werden. Der Pufferbereich liegt im stark sauren Bereich. Wegen ihrer sauren Reaktion in Wasser werden sie beispielsweise in WC-Reinigern eingesetzt.

  Gleichgewichtsreaktionen Gleichgewichtskonstante bei 25 °C PH Sulfat plot.png
(1) \mathrm{H_2SO_4 + H_2O \ \rightleftharpoons \ HSO_4^{-} + H_3O^+}  K_{a1}=\mathrm{\frac{[HSO_4^{-}][H_3O^+]}{[H_2SO_4]}}\simeq 1\times10^{3}
(2) \mathrm{HSO_4^{-} + H_2O \ \rightleftharpoons \ SO_4^{2-} + H_3O^+}  K_{a2}=\mathrm{\frac{[SO_4^{2-}][H_3O^+]}{[HSO_4^{-}]}}\simeq 1{,}3\times10^{-2}

Vorkommen

Sulfate stellen für viele metallische Elemente die wichtigsten mineralischen Verbindungen dar. Quellen des Sulfates im Bodengestein sind z.B. Anhydrit (CaSO4), Gips (CaSO4 · 2 H2O) und Alabaster (CaSO4 · 2 H2O). Biologische Quelle sind (bakterielle) Sulfatbildungen aus Sulfid und schwefelhaltigen Biomasse-Bestandteilen (z.B. Proteinen). Sulfate kommen in unterschiedlichen Mengen im Grundwasser vor. Für daraus gewonnenes Trinkwasser gilt nach der deutschen Trinkwasserverordnung ein Grenzwert von 250 mg/l.

Struktur des Sulfations

Molekülorbitalschema. Von links nach Rechts: Schwefelatom, Einfachbindungsgerüst, Mehrfachbindung, Sauerstoffatome

Das Sulfation ist tetraedrisch gebaut, die S-O-Bindungen sind alle gleichwertig und gleich lang. Die Bindungsverhältnisse können entweder durch mesomere Grenzstrukturen mit delokalisierten π-Bindungen und zwei negativ geladenen Sauerstoffatomen oder durch Ladungstrennung mit zweifach positiv geladenem Schwefelatom und negativer Ladung an jedem Sauerstoffatom beschrieben werden. Es ist isoelektronisch mit dem Perchloration. Aus dem Molekülorbitaldiagramm geht hervor, wie die Bindung und die Hypervalenz erklärt werden kann. Es wird ein zweifach positiv geladenes Schwefelatom mit vier einfach besetzten Atomorbitalen angenommen. Diese Orbitale werden mit vier einfach besetzten 2p-Orbitalen aus den einfach negativ geladenen Sauerstoffatomen kombiniert. Es entstehen vier bindende und vier antibindende σ-Orbitale, von denen nur die bindenden vollständig aufgefüllt sind, und damit das tetraedrische Molekülgerüst mit vier lokalisierten Einfachbindungen. Die unbesetzten antibindenden σp*-Orbitale werden anschließend mit je einem voll besetzten p-Orbital dreier Sauerstoffatome kombiniert, es entstehen drei bindende und drei antibindende π-Orbitale, wovon wieder nur die bindenden Orbitale besetzt sind. Es resultieren drei π-Bindungen, die über das gesamte Molekül, also über das Schwefelatom und alle vier Sauerstoffatome, delokalisiert sind.

Nachweis

Sulfate werden chemisch mit Bariumchlorid oder Bariumhydroxidlösung in Salzsäurenachgewiesen. Dabei entsteht ein schwerlöslicher Niederschlag aus weißem Bariumsulfat:

\mathrm{SO_4^{2-} + Ba^{2+} \longrightarrow BaSO_4 \downarrow}
Sulfat-Ionen bilden mit Barium-Ionen einen weißen, säureunlöslichen Niederschlag von Bariumsulfat.

Die Säure wird zur Entstörung zugesetzt, da andere Anionen wie Carbonatoder Sulfit mit Barium in Wasser ebenfalls schwerlösliche, aber in Säuren lösliche Salze bilden.

In der Wasseranalytik finden für die quantitative Bestimmung auch titrimetrische Verfahren Anwendung.

Beispiele

Prototypen der Vitriole, Alaune und weiterer Sulfate sind:

Tabelle: Weitere Salze der Schwefelsäure
Name Formel Trivialname / Farbe und Wasserlöslichkeit
Kaliumsulfat K2SO4 Kalisulfat, schwefelsaures Kalium / farblos, löslich
Natriumsulfat Na2SO4 Glaubersalz / farblos, löslich
Bariumsulfat BaSO4 Malerweiß / weiß, unlöslich
Calciumsulfat CaSO4 Gips,(je nach Kristallwassergehalt) / weiß, kaum löslich
Ammoniumsulfat (NH4)2SO4 Ammonsulfat, Düngesalz / farblos, löslich (saure Reaktion)
Kupfersulfat CuSO4 Kupfervitriol (mit Kristallwasser) / blau, wasserlöslich
Aluminiumsulfat Al2(SO4)3 Alaun (Bestandteil neben Kaliumsulfat und Kristallwasser) / farblos, wasserlöslich
Basierend auf einem Artikel in: externer Link Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de;
Datum der letzten Änderung: Jena, den: 28.06. 2023