Bjorken-Skalierung

Bjorken-Skalierung (nach J. Bjorken, der sie 1969 einführte) bezeichnet in der Physik eine Abhängigkeit der Strukturfunktionen bei tiefinelastischer Streuung (z.B. von Elektron und Proton) von nur einer kinematischen Größe.

Dieses Verhalten entspricht einer elastischen Streuung an punktförmigen Objekten, was zur Entwicklung des Partonmodells führte.

Eigentlich wird bei inelastischer Streuung eine Abhängigkeit von zwei unabhängigen kinematischen Variablen erwartet; diese tritt jedoch aufgrund der inneren Struktur des Protons nicht auf, da effektiv an einzelnen Quarks gestreut wird.

Mathematische Formulierung

Für inelastische Elektron-Proton Streuung kann der Wirkungsquerschnitt allgemein mit den Strukturfunktionen W_{1},W_{2} geschrieben werden als:

{\displaystyle {\frac {d^{2}\sigma }{d\Omega \,dE^{\prime }}}=\left({\frac {d\sigma }{d\Omega }}\right)_{\text{Mott}}\left[2W_{1}(Q^{2},\nu )\,\tan ^{2}(\theta /2)+W_{2}(Q^{2},\nu )\right]}.

Dabei ist

Im elastischen Fall

{\displaystyle {\frac {d\sigma }{d\Omega }}=\left({\frac {d\sigma }{d\Omega }}\right)_{\text{Mott}}{\frac {E^{\prime }}{E}}\left[2K_{1}\sin ^{2}(\theta /2)+K_{2}\cos ^{2}(\theta /2)\right]}

hängen die Strukturfunktionen K_{1},K_{2} nur von einer Variablen ab.

Die Variable {\displaystyle x_{\text{Bjorken}}\equiv x=-{\tfrac {q^{2}}{2qP}}=-{\tfrac {q^{2}}{2\nu M}}} kann anstatt von \nu oder Q^2 auch als unabhängige Variable verwendet werden. Sie gibt im Quarkmodell den Impulsbruchteil {\displaystyle xP} eines Quarks im Proton an.

James Bjorken sagte voraus, dass bei hohen Energien sich die Strukturfunktionen verhalten wie

{\displaystyle MW_{1}(q^{2},x)\rightarrow F_{1}(x)}
{\displaystyle {\frac {-q^{2}}{2Mc^{2}x}}W_{2}(q^{2},x)\rightarrow F_{2}(x)},

also nur von einer Variablen {\displaystyle x=x_{\text{Bjorken}}} abhängen. Dieses Verhalten, mit der Abhängigkeit von nur einer Variablen, wird als Bjorken-Skalierung bezeichnet.

Skalenverletzung

Bei extremen Werten von x tritt durch eine Abhängigkeit der Strukturfunktion F_{2} von Q^2 Skalenverletzung auf:

Dies ist darauf zurückzuführen, wie die Strukturfunktionen des Protons von der Energieskala abhängen:

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 07.11. 2021