Wuchtgeschoss

Ein Wuchtgeschoss ist eine Munition, die allein die kinetische Energie (KE) ihres Projektils nutzt, um die Zieloberfläche wie beispielsweise eine Panzerung zu durchdringen. Im Geschoss selbst wird deswegen auf Sprengstoff und Zünder verzichtet.

Weitere gebräuchliche Bezeichnungen für Wuchtgeschosse sind im militärischen Bereich KE-Geschoss und aufgrund der Geschossform Pfeilwuchtgeschoss. Auch der Begriff KE-Penetrator ist für das Projektil, aufgrund der Wirkungsweise und in Anlehnung an den gängigen englischen Begriff abgeleitet, gebräuchlich (vom lateinischen penetrare = eindringen, durchdringen).

Begriffserklärung und Verwendung

Auch wenn der Begriff Wuchtgeschoss prinzipiell auf viele andere Geschosse wie Pistolen- oder Gewehrkugeln oder sogar Armbrustbolzen und Luftgewehrkugeln zutrifft, wird er praktisch ausschließlich für panzerbrechende Geschosse verwendet.

Militärische Wuchtgeschosse werden heute praktisch weltweit von allen Armeen zum Zerstören von mittel bis stark gepanzerten Zielen eingesetzt. Sie werden in erster Linie verwendet, um Kampfpanzer, Schützenpanzer oder Bunker zu bekämpfen. Aufgrund der Veränderung der Kriegsführung, weg vom direkten Feuerkampf zwischen Kampfpanzern, hin zur asymmetrischen Kriegsführung, haben sie allerdings heute etwas von ihrer zentralen und herausragenden Rolle in der militärischen Ausrüstung verloren.

Aufbau und Wirkung

Material

Das eigentliche Geschoss besteht dabei aus einem Metall, einer gegebenenfalls gehärteten Legierung oder einer Keramik, jeweils von möglichst großer Dichte. Durch die große Dichte und Härte wird der Großteil der kinetischen Energie (Wucht) zum Durchdringen der Panzerung aufgewendet. Für Wuchtgeschosse wird heute in der Regel gesintertes Wolframcarbid oder abgereichertes Uran (engl. DU = depleted uranium) verwendet, wodurch letztere oft als Uranmunition bezeichnet werden.

Wirkprinzip

Das Projektil verdrängt durch seine hohe kinetische Energie und die meist relativ dünne und angespitzte Pfeilform beim Auftreffen und Eindringen das Material, das aufgrund seiner Trägheit nicht mehr mit elastischer und plastischer Verformung reagieren kann, um so die Energie zu absorbieren. Das Wirk- und Eindringprinzip ist dabei vergleichbar mit einem Druckluftnagler, der große kinetische Energie auf der sehr kleinen Nagelspitze konzentriert.

Das Eindringverhalten ist damit prinzipiell ähnlich dem Stachel eines Hohlladungsgeschosses, nur dass hier die hydrodynamischen Gesetze nicht gelten, da die Drücke weit unter den erforderlichen 200 Gigapascal (GPa) liegen. Wäre das Geschoss weniger dicht, weicher oder hätte eine geringere Geschwindigkeit, würde die Energie nur zur Verformung von Geschoss und Panzerung führen, ohne wirklich in das Ziel einzudringen.

Beim Eindringen in die Panzerung wird die kinetische Energie zum Teil in Druck und damit auch große Temperatur umgesetzt. Beim Durchdringen der Panzerung entsteht durch die große Reibung des Penetrators mit den Panzerplatten ein „Splitterregen“ brennenden Materials, das mit dem Penetrator mit sehr hoher Geschwindigkeit nach innen schießt.

Die Wirkung im Ziel beruht dabei auf dem Zersplittern der Panzerung und des Projektils auf der Rückseite der durchdrungenen Zielfläche und auf dem Hineinschießen des geschmolzenen Materials und pyrophoren Partikeln von Panzerung und Penetrator, die annähernd eine explosive Wirkung besitzen. Dabei wird die Besatzung verwundet oder getötet, das Ziel durch die Splitterwirkung und Feuer innen stark beschädigt und häufig zusätzlich durch Sekundärschäden wie Entzündung des Kraftstoffes oder Explosion der im Ziel vorhandenen Munition zerstört.

Bei der Ausführung als unterkalibrige Munition hat das eigentliche Projektil, der sogenannte „Penetrator“, die Form eines Pfeils und wird mit einem Treibkäfig (engl. „Sabot“) im Geschützrohr geführt. Der Treibkäfig, der heute normalerweise aus Kunststoff oder CFK hergestellt wird, dient der Kaliberanpassung und der Abdichtung der Kanone und fällt unmittelbar beim Verlassen der Rohrmündung durch den hohen Luftwiderstand ab. Eine derartige Munition wird meist Treibspiegel- oder Treibkäfig-Munition genannt oder trägt die Abkürzung DS (engl. Discarding Sabot) in der Kurzbezeichnung.

Auch moderne Verbundpanzerungen, beispielsweise die Chobham-Panzerung, Mexas, oder Reaktivpanzerung bieten gegenüber den neuesten Wuchtgeschossen aus großkalibrigen Panzerkanonen nur bedingten Schutz, insbesondere bei weniger als etwa einem Kilometer Schussentfernung.

Entstehung

Die ersten Wuchtgeschosse aus Wolfram wurden bereits bei der deutschen Wehrmacht seit Beginn des Zweiten Weltkriegs verwendet (Bezeichnung: „Panzergranate ROT“ oder Panzergranate 40). Frühe als Wuchtgeschosse ausgeführte Munitionssorten waren noch kalibergleich mit den Geschützrohren, aus denen sie verschossen wurden. Die Rohre verfügten über einen Drall mit Zügen und Feldern, was die Projektile zur Stabilisierung in Längsrotation versetzte. Heutige Wuchtgeschosse größerer Kaliber, die beim Kampfpanzer normalerweise aus Glattrohrkanonen verschossen werden, sind unterkalibrig und werden zur Stabilisierung mit Finnen oder Leitwerken versehen.

Treibkäfiggeschoss (APFSDS)

Sowjetische BM 15 (Kaliber 125 mm)

Da drallstabilisierten Geschossen hinsichtlich der Mündungsgeschwindigkeit und Länge und somit auch in der Durchschlagskraft Grenzen gesetzt sind, wurden die panzerbrechenden, flügelstabilisierten Treibkäfiggeschosse entwickelt (APFSDS für Armor Piercing Fin-Stabilized Discarding Sabot). Sie stellen heute den letzten Entwicklungsstand von im Militär eingeführten großkalibrigen Wuchtgeschossen dar. Die heute üblichen Geschosse werden normalerweise aus glatten Geschützrohren verschossen und bestehen aus einem leichten Mantel, dem Treibkäfig, und einem dünnen, spitzen, schweren Metallpfeil, dem Penetrator. Er wird mit Flossen oder Finnen stabilisiert. Der Durchmesser des Penetrators ist dabei deutlich kleiner als das Kaliber der Kanone, das heißt, es handelt sich dabei um ein Unterkalibergeschoss. Die Energie des Geschosses wird so in dem dünnen Metallpfeil konzentriert und die Durchschlagskraft erhöht.

Diese Munitionsart ist heute bei Kampfpanzern normalerweise als hülsenlose Munition konzipiert mit einer Treibladung hauptsächlich aus Nitrozellulose.

Die Mündungsgeschwindigkeit moderner APFSDS-Projektile beträgt zwischen 1400 und 1800 Meter pro Sekunde (m/s), das heißt teilweise mehr als fünffache Schallgeschwindigkeit.

Übersicht über Geschossenergie und Durchschlagsleistung

Veranschaulichung der kinetischen Energie

Eine Lokomotive mit einer Masse von 50 Tonnen und einer Geschwindigkeit von 80 km/h (22,2 m/s) besitzt eine kinetische Energie von rund 12,3 Megajoule (MJ). Eines der leistungsfähigsten Wuchtgeschosse, die DM63, die aus einer 120-mm-Glattrohrkanone L/55 abgefeuert wird, erreicht bei einer Mündungsgeschwindigkeit von 1750 m/s und einer gegenüber seinen Vorgängern erhöhten Penetratormasse (rund 8,5 kg) ungefähr 13 MJ an der Mündung.

Durchschlagsleistung

Durchschlagsleistung verschiedener APFSDS-Munitionsarten bei einem Beschuss aus 2000 Meter Entfernung auf eine monolithische Stahlplatte in einem Winkel von 60 Grad.

Munitionstyp Entwicklungsjahr Entwicklungsland Geschossmaterial Durchschlagskraft
105 mm L64A4 1978 Vereinigtes Konigreich WC-Geschoss 340 mm
105 mm M111 Ende der siebziger Jahre Israel WC-Geschoss 340 mm
105 mm M774 1979 Vereinigte Staaten DU-Geschoss 360 mm
120 mm DM13 1979 Deutschland WC-Geschoss 440 mm
120 mm OLF120G1 Anfang der neunziger Jahre Frankreich WC-Geschoss 540–580 mm
120 mm DM53 2000 Deutschland WC-Geschoss 600–640 mm
120 mm M829A3 2003 Vereinigte Staaten DU-Geschoss 800 mm
125 mm 3BM69 „Vakiim“-1 2005 Russland DU-Geschoss 900 mm
125 mm 3BM70 „Vakiim“-2 2005 Russland WC-Geschoss 800 mm

Geeignete Beschleuniger

Im Einsatz werden Wuchtgeschosse durch konventionelle Treibladungen in Kanonen beschleunigt. Prinzipiell wären auch Railguns und zweistufige Leichtgaskanonen zum Abschuss von Wuchtgeschossen geeignet. Damit könnte eine noch höhere Geschwindigkeit und damit kinetische Energie erreicht werden. Derartige Beschleuniger werden allerdings bisher nur in der Forschung eingesetzt; es existieren noch keine einsatzfähigen Waffensysteme.

Schutzmaßnahmen

Es existieren derzeit keine wirkungsvollen Schutzmaßnahmen gegen moderne großkalibrige Hochleistungswuchtgeschosse. Selbst modernste Panzerungen werden bei Kampfentfernungen von mehreren Kilometern immer noch durchschlagen.

Wie weit in der Entwicklung befindliche abstandsaktive Schutzmaßnahmen, insbesondere die sogenannten „Hardkill-Systeme“, in der Lage sein werden, derartige Geschosse in ihrer Wirkung zu beeinträchtigen, den Treffer zu verhindern oder den anfliegenden Penetrator zu zerstören, hat die Praxis im Einsatz bisher noch nicht gezeigt.

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 05.01. 2024