Ginsburg-Landau-Theorie
Die Ginsburg-Landau-Theorie, auch GLAG-Theorie genannt (nach den Anfangsbuchstaben der Erfinder Witali Ginsburg, Lew Landau, Alexei Abrikossow, Lew Gorkow), ist eine Theorie zur Beschreibung der Supraleitung. Ginsburg und Abrikossow erhielten dafür 2003 zusammen mit Leggett den Nobelpreis für Physik.
Im Gegensatz zur BCS-Theorie,
die eine Erklärung auf mikroskopischer Basis anstrebt, untersucht sie die makroskopischen
Eigenschaften von Supraleitern mit Hilfe von allgemeingültigen thermodynamischen
Argumenten. Es handelt sich also um eine phänomenologische
Theorie, die schon zum Zeitpunkt ihrer Aufstellung 1950 richtig war, nur dass
ursprünglich anstelle der Ladung der Cooper-Paare von
der allgemeine Ladungsparameter
gewählt wurde. 1959 konnte die Ginsburg-Landau-Theorie durch Gorkow aus der
BCS-Theorie hergeleitet werden, wobei man insbesondere die Identifikation
erkannte.
Die Ginsburg-Landau-Theorie ist eine Eichtheorie. Die speziell für Supraleiter formulierte Theorie ist ein Spezialfall der allgemeineren Landau-Theorie von Phasenübergängen.
Mathematische Formulierung
Aufbauend auf Landaus Theorie der Phasenübergänge
zweiter Ordnung argumentierten Landau und Ginsburg, dass die freie
Energie
eines Supraleiters nahe dem Phasenübergang durch einen komplexen Ordnungsparameter
ausgedrückt werden kann. Dieser beschreibt, inwieweit sich das System im
supraleitenden Zustand befindet;
entspricht dem Normalzustand ohne Supraleitung.
Die freie Energie lautet dann:
,
mit
: die freie Energie im Normalzustand,
und
: phänomenologische Parameter,
: effektive Masse (später mit der Masse von Cooperpaaren identifiziert)
: das Vektorpotential und
: die magnetische Induktion, die mit
über die Beziehung
zusammenhängt.
Dabei wurde im Term für die minimale
Kopplung gleich die Identifizierung der Ladung mit der von Cooperpaaren
()
benutzt.
Die Minimierung der freien Energie hinsichtlich der Schwankungen des Ordnungsparameters und des Vektorpotentials führt auf die beiden Ginsburg-Landau-Gleichungen:
und
.
Dabei bezeichnet
die elektrische
Stromdichte und
den Realteil.
In der mathematischen Behandlung des Ginsburg-Landau-Modells erzielten Fabrice Béthuel, Frédéric Hélein, Haïm Brezis und Sylvia Serfaty bedeutende Fortschritte. Sie zeigten u. a., dass der Vortex für große Werte des Ordnungsparameters durch die Werte einer renormierten Energie festgelegt ist.
Interpretation eines Spezialfalls
Betrachtet man einen homogenen Supraleiter ohne äußeres Magnetfeld, dann vereinfacht sich die erste Ginsburg-Landau-Gleichung zu:
,
Die triviale Lösung
dieser Gleichung entspricht dem Normalzustand des Metalls (nicht-supraleitender
Zustand), der bei Temperaturen oberhalb der Sprungtemperatur
vorliegt.
Unterhalb der Sprungtemperatur wird eine nicht-triviale Lösung
erwartet. Unter dieser Annahme kann obige Gleichung umgeformt werden in:
.
Der Betrag
der komplexen Zahl auf der linken Seite der Gleichung ist nichtnegativ,
d.h. ,
damit auch sein Quadrat und damit auch die rechte Seite der Gleichung. Für die
nicht-triviale Lösung von
muss der Term auf der rechten Seite positiv sein, d.h.
.
Dies kann erreicht werden durch die Annahme folgender Temperaturabhängigkeit
für
:
, mit
.
- Unterhalb der Sprungtemperatur (
) ist der Ausdruck
negativ, die rechte Seite der obigen Gleichung positiv und es gibt eine nicht-triviale Lösung für
. Außerdem gilt in diesem Fall:
, d.h.
nähert sich Null, wenn die Temperatur
von unten gegen die Sprungtemperatur
strebt. Ein solches Verhalten ist typisch für einen Phasenübergang zweiter Ordnung.
- Oberhalb der Sprungtemperatur (
) ist der Ausdruck
positiv und die rechte Seite der obigen Gleichung negativ. In diesem Fall löst nur
die Ginsburg–Landau-Gleichung.
In der Ginsburg–Landau-Theorie wird angenommen, dass diejenigen Elektronen,
die zur Supraleitung beitragen, zu einer Superflüssigkeit
kondensiert sind. Danach beschreibt
gerade diesen Anteil an Elektronen.
Beziehungen zu anderen Theorien
Zur Schrödinger-Gleichung
Die erste Ginsburg–Landau-Gleichung weist interessante Ähnlichkeiten zur
zeitunabhängigen Schrödingergleichung
auf; man beachte aber, dass
hier nicht wie in der Quantenmechanik
eine Wahrscheinlichkeitsamplitude ist, sondern die angegebene
quasi-klassische Bedeutung hat (
ist die Dichte der Träger der Supraleitung, der Cooper-Paare). Mathematisch
handelt es sich um eine zeitunabhängige Gross-Pitaevskii-Gleichung,
welche eine nichtlineare
Verallgemeinerung der Schrödingergleichung ist. Die erste Gleichung bestimmt
also den Ordnungsparameter
als Funktion des angelegten Magnetfelds.
Zur London-Gleichung
Die zweite Ginsburg–Landau-Gleichung gibt den Suprastrom an und entspricht der London-Gleichung.
Zum Higgs-Mechanismus
Formal besteht eine große Ähnlichkeit zwischen der phänomenologischen
Beschreibung der Supraleitung durch Ginsburg und Landau und dem Higgs-Kibble-Mechanismus
in der Hochenergiephysik.
Der Meißner-Ochsenfeld-Effekt
der Supraleitung wird mit Hilfe einer endlichen Eindringtiefe
der magnetischen Induktion beschrieben. Dies entspricht aber zugleich einem
Masseterm bei den elektromagnetischen Eichfeldern
der Hochenergiephysik, wenn man die übliche Übersetzung
benutzt (
ist dabei das Plancksche
Wirkungsquantum, geteilt durch
,
und
die Lichtgeschwindigkeit).
Die Eindringtiefe wird dabei als Compton-Wellenlänge
der Masse
interpretiert.
Ableitungen aus der Theorie
Aus den Ginsburg-Landau-Gleichungen lassen sich viele interessante Ergebnisse ableiten. Das vermutlich bedeutendste ist die Existenz von zwei charakteristischen Längen in Supraleitern.
Kohärenzlänge
Die erste ist die Kohärenzlänge ξ,
.
die die Größe der thermodynamischen Fluktuationen in der supraleitenden Phase beschreibt.
Eindringtiefe
Die zweite ist die Eindringtiefe
,
wobei
den Ordnungsparameter im Gleichgewicht, ohne elektromagnetisches Feld,
bezeichnet. Die Eindringtiefe gibt die Tiefe wieder, bis zu der ein externes
Magnetfeld in den Supraleiter eindringen kann.
Bemerkung: hier wurden SI-Einheiten verwendet. In den in der Literatur häufig verwendeten cgs-Einheiten ergibt sich:
Ginsburg-Landau-Parameter
Das Verhältnis
dieser beiden charakteristischen Längen wird als
Ginsburg-Landau-Parameter bezeichnet. Abhängig von seiner Größe lassen
sich Supraleiter in zwei Klassen mit unterschiedlichen physikalischen
Eigenschaften einteilen (nach Abrikossow 1957)
:
- Typ I-Supraleiter sind solche mit
.
- Typ II-Supraleiter sind solche mit
. Sie behalten ihre supraleitenden Eigenschaften auch unter dem Einfluss starker Magnetfelder (für bestimmte Legierungen bis zu 25 Tesla).
Es handelt sich um einen Phasenübergang zweiter Ordnung.
Flussschläuche
Ein weiteres wichtiges Ergebnis der Ginsburg-Landau-Theorie wurde 1957 von Alexei Alexejewitsch Abrikossow gefunden. In einen Typ II-Supraleiter in einem hohen Magnetfeld dringt das Feld in Form von Kanälen mit quantisiertem Fluss ein. Diese sogenannten Flussschläuche oder Flussfäden bilden ein – oft hexagonales – Abrikossow-Gitter.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 13.11. 2021