Ensemblemittelwert

Der Ensemblemittelwert \langle \dots \rangle (auch Ensemblemittel oder Scharmittelwert) ist ein Mittelwert aus der statistischen Physik. Mit ihm lässt sich der Mittelwert einer Messgröße aller Elemente eines Ensembles zu einer zufällig gewählten Zeit berechnen.

Verwendung

Für ein ergodisches System ist in einem gegebenen Ensemble der Ensemblemittelwert gleich dem über unendlich lange Zeit bestimmten Zeitmittelwert. Die Ergodenhypothese sagt aus, dass thermodynamische Systeme ergodisch sind und für sie somit die erwähnte Gleichheit gilt.

Definition

Der Ensemblemittelwert \langle A\rangle einer Größe A ist gegeben durch:

{\displaystyle \langle A\rangle =\sum _{i\in I}p_{i}\cdot A_{i}=\sum _{i\in I}{\frac {e^{-{\frac {H_{i}}{k_{\mathrm {B} }\cdot T}}}\cdot A_{i}}{\sum _{i\in I}e^{-{\frac {H_{i}}{k_{\mathrm {B} }\cdot T}}}}}}

mit

{\displaystyle p_{i}={\frac {e^{-{\frac {H_{i}}{k_{\mathrm {B} }\cdot T}}}}{Z}}},
{\displaystyle Z=\sum _{i\in I}e^{-{\frac {H_{i}}{k_{\mathrm {B} }\cdot T}}}}

Lässt sich die Menge I der Zustände nicht mehr abzählen, sondern ist kontinuierlich - beispielsweise, wenn der Hamiltonian des Systems von kontinuierlichen Orten und kontinuierlichen Geschwindigkeiten abhängt, so geht man von der Summe zum Integral über, indem man die obige diskrete Schreibweise geeignet mit dem Phasenraumelement erweitert, woraufhin man ein Riemann-Integral identifiziert:

{\displaystyle \langle A\rangle ={\frac {\int _{\mathbb {R} ^{6N}}{\frac {d^{3N}rd^{3N}p}{h^{3N}N!}}A\cdot e^{-{\frac {H({\vec {r}}_{1},\dots {\vec {r}}_{N},{\vec {p}}_{1},\dots {\vec {p}}_{N})}{k_{\mathrm {B} }\cdot T}}}}{\int _{\mathbb {R} ^{6N}}{\frac {d^{3N}rd^{3N}p}{h^{3N}N!}}\cdot e^{-{\frac {H({\vec {r}}_{1},\dots {\vec {r}}_{N},{\vec {p}}_{1},\dots {\vec {p}}_{N})}{k_{\mathrm {B} }\cdot T}}}}}}
Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 29.01. 2020