Regressionsparameter
Regressionsparameter, auch Regressionskoeffizienten oder Regressionsgewichte genannt, messen den Einfluss einer Variablen in einer Regressionsgleichung. Dazu lässt sich mit Hilfe der Regressionsanalyse der Beitrag einer unabhängigen Variable (dem Regressor) für die Prognose der abhängigen Variable herleiten.
Bei einer multiplen Regression kann es sinnvoll sein, die standardisierten Regressionskoeffizienten zu betrachten, um die Erklärungs- oder Prognosebeiträge der einzelnen unabhängigen Variablen (unabhängig von den bei der Messung der Variablen gewählten Einheiten) miteinander vergleichen zu können, z. B. um zu sehen, welcher Regressor den größten Beitrag zur Prognose der abhängigen Variable leistet.
Interpretation des Absolutglieds und der Steigung
Gegeben sei das multiple
lineare Modell
bzw. in Matrixschreibweise
.
Den Parameter
bezeichnet man als Niveauparameter, Achsenabschnitt,
Absolutglied, Regressionskonstante oder kurz Konstante
(engl. intercept) und die Parameter
nennt man Steigungsparameter, Steigungskoeffizienten, oder
Anstieg (engl. slope). Man unterscheidet bei der Interpretation
der Regressionskoeffizienten die folgenden Fälle:
Level-Level-Transformation
Im Fall, bei der die endogene Variable untransformiert (level) ist und die
exogene Variable ebenfalls (level) gilt aufgrund von
.
Damit gilt für den Niveau- und den Steigungsparameter:
und
, ceteris paribus (c.p.),
Der Niveauparameter lässt sich wie folgt interpretieren: Die Zielgröße
beträgt im Mittel
(bzw.
)
wenn alle Regressoren
sind.
Für den jeweiligen Steigungsparameter
gilt: Steigt
c.p. um eine Einheit, dann steigt
im Mittel um
-Einheiten.
Log-Log-Transformation
Im Fall, bei der die endogene Variable logarithmisch transformiert (log) ist und die exogene Variable ebenfalls (log) gilt
, ceteris paribus (c.p.),
Dies kann wie folgt interpretiert werden: Steigt das transformierte
c.p. um 1 %, dann steigt das transformierte
im Mittel um
-Prozent.
Ökonomisch würde dies der Interpretation als Elastizität (Wirtschaft)
entsprechen.
Standardisierte Regressionskoeffizienten
Die standardisierten Regressionskoeffizienten
(gelegentlich auch Beta-Werte oder Beta-Gewicht genannt) ergeben sich aus einer
linearen
Regression, in der die unabhängigen und abhängigen Variablen standardisiert
worden sind, das heißt, der Erwartungswert
gleich Null und die Varianz
gleich Eins gesetzt wurde. Sie können auch direkt berechnet werden aus den
Regressionskoeffizienten der linearen Regression:
- wobei
der Regressionskoeffizient für Regressor
,
Standardabweichung der unabhängigen Variable
- und
Standardabweichung der abhängigen Variable
Sind die standardisierten erklärenden Variablen
untereinander unabhängig und auch unabhängig vom Störterm
(Voraussetzung
im klassischen Regressionsmodell), dann gilt
das heißt die Summe der quadrierten standardisierten Regressionskoeffizienten ist kleiner gleich Eins. Sind einer oder mehrere der standardisierten Regressionskoeffizienten größer als Eins bzw. kleiner als minus Eins, weist dies auf Multikollinearität hin.
Beispiel

Für die abhängige Variable Mittlerer Hauspreis in selbstbewohnten Häusern pro Bezirk (in 1000 US$) aus dem Boston Housing Datensatz ergibt sich das nebenstehende Regressionsmodell:
- Jedes Zimmer zusätzlich im Haus verteuert den Kaufpreis um 4873 US$,
- jeder Kilometer mehr zu einer Arbeitsstätte reduziert den Kaufpreis um 461 US$ und
- jeder Prozentpunkt mehr beim Anteil der Unterschichtbevölkerung reduziert den Kaufpreis um 723 US$.
Standardisiert man alle Variablen, kann man den Einfluss einer erklärenden Variablen auf die abhängige Variable abschätzen:
- Den größten Einfluss hat die Variable Anteil der Unterschichtbevölkerung: −0,562,
- den zweitgrößten Einfluss hat die Variable Anzahl Zimmer: 0,372 und
- die Variable Entfernung zu Arbeitsstätten hat den geringsten Einfluss: −0,106.
Wären die Variablen unabhängig voneinander, könnte man anhand der quadrierten Regressionskoeffizienten den Anteil der erklärten Varianz angeben:
- Die Variable Anteil der Unterschichtbevölkerung erklärt knapp
32 % der Varianz des mittleren Hauspreises (
),
- die Variable Anzahl Zimmer erklärt knapp 14 % der Varianz des
mittleren Hauspreises (
) und
- die Variable Entfernung zu Arbeitsstätten erklärt etwas mehr als
1 % der Varianz des mittleren Hauspreises (
).



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 06.04. 2020